Green synthesis and biotechnological profile of silver nanoparticles using Piper nigrum L. essential oil

Authors

DOI:

https://doi.org/10.5902/2179460X74388

Keywords:

Antioxidant, Anti-inflammatory, Characterization

Abstract

It evaluated the chemical profile, antioxidant and anti-inflammatory activity, in an unprecedented way, of silver nanoparticles (AgNPs) synthesized from the essential oil nanoemulsion (NEO) of Piper nigrum. For essential oil extraction (EO), the hydrodistillation technique was used, and the chemical constituents were identified by Gas Chromatography Coupled to Mass Spectrometry (GC-MS). The nanoemulsions were prepared using the phase inversion method, and the synthesis of the AgNPs were performed by the AgNO3 reduction method using NEO. The AgNPs was characterized in terms of chemical profile by UV-Vis Spectrophotometry and particle size by Dynamic Mirroring of Light. Antioxidant activity was evaluated using the ABTS radical discoloration method and anti-inflammatory activity by protein denaturation. The majority constituent of the EO was limonene (42.41%). The maximum SPR band was centered at 420 nm, indicating the characteristic peak of the AgNPs. The lowest IC50 16.26 mg/L for antioxidant activity was obtained for AgNP pH 11. The IC50 that demonstrated the best result for anti-inflammatory activity was pH 11 was 0.217 mg/mL. This study brought in unprecedented results for AgNPs of P. nigrum, demonstrating to be efficient in improving the activities tested in this study and also demonstrating the effect of pH in these formulations.

Downloads

Download data is not yet available.

Author Biographies

João Pedro Mesquita Oliveira, Universidade Federal do Maranhão

Bachelor's degree in Chemistry in progress from the Federal University of Maranhão.

Gustavo Oliveira Everton, Universidade Federal do Maranhão

Master's degree in Health and Environment from the Federal University of Maranhão.

Victor Elias Mouchrek Filho, Universidade Federal do Maranhão

PhD in Chemistry from the University of São Paulo.

References

Abdul-Hafeez, E. Y., Karamova, N. S., & Ilinskaya, O. N. (2014). Antioxidant activity and total phenolic compound content of certain medicinal plants. Int. J. Biosci, 5(9), 213-222.

Acquaviva, R., Sorrenti, V., Santangelo, R., Cardile, V., Tomasello, B., Malfa, G., & Di Giacomo, C. (2016). Effects of an extract of Celtis aetnensis (Tornab.) Strobl twigs on human colon cancer cell cultures. Oncology Reports, 36(4), 2298-2304.

Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. Journal of advanced research, 7(1), 17-28.

Andrade, K. S. (2015). Extração e microencapsulamento de extratos de interesse biológico provenientes de pimenta-do-reino (Piper nigrum L.) e de pimenta rosa (Schinus terebinthifolius R.) (Tese de mestrado). Curso Engenharia de Alimentos, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brasil.

Behravan, M., Panahi, A. H., Naghizadeh, A., Ziaee, M., Mahdavi, R., & Mirzapour, A. (2019). Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. International journal of biological macromolecules, 124, 148-154.

Burdușel, A. C., Gherasim, O., Grumezescu, A. M., Mogoantă, L., Ficai, A., & Andronescu, E. (2018). Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomaterials, 8(9), 681.

Campos, K. E., Diniz, Y. S., Cataneo, A. C., Faine, L. A., Alves, M. J. Q. F., & Novelli, E. L. B. (2003). Hypoglycaemic and antioxidant effects of onion, Allium cepa: dietary onion addition, antioxidant activity and hypoglycaemic effects on diabetic rats. International journal of food sciences and nutrition, 54(3), 241-246.

Chung, I. M., Park, I., Seung-Hyun, K., Thiruvengadam, M., & Rajakumar, G. (2016). Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale research letters, 11(1), 1-14.

Diallo, M. S., Fromer, N. A., & Jhon, M. S. (2014). Nanotechnology for sustainable development: retrospective and outlook (pp. 1-16).

Journal of Nanoparticle Research, 15(2044), 1-16.

Ebrahiminezhad, A., Raee, M. J., Manafi, Z., Sotoodeh Jahromi, A., & Ghasemi, Y. (2016). Ancient and novel forms of silver in medicine and biomedicine. Journal of Advanced Medical Sciences and Applied Technologies, 2(1), 122-128.

Farhoosh, R., Johnny, S., Asnaashari, M., Molaahmadibahraseman, N., & Sharif, A. (2016). Structure–antioxidant activity relationships of o-hydroxyl, o-methoxy, and alkyl ester derivatives of p-hydroxybenzoic acid. Food chemistry, 194, 128-134.

Fries, C. N., Curvino, E. J., Chen, J. L., Permar, S. R., Fouda, G. G., & Collier, J. H. (2021). Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. Nature Nanotechnology, 16(4), 1-14.

Gomes, J. F., Garcia, A. C., Ferreira, E. B., Pires, C., Oliveira, V. L., Tremiliosi-Filho, G., & Gasparotto, L. H. (2015). New insights into the formation mechanism of Ag, Au and AgAu nanoparticles in aqueous alkaline media: alkoxides from alcohols, aldehydes and ketones as universal reducing agents. Physical Chemistry Chemical Physics, 17(33), 21683-21693.

Hebeish, A., Shaheen, T. I., El-Naggar, & M. E. (2016). Solid state synthesis of starch-capped silver nanoparticles. International journal of biological macromolecules, 87, 70-76.

Jebril, S., Jenana, R. K. B., & Dridi, C. (2020). Green synthesis of silver nanoparticles using Melia azedarach leaf extract and their

antifungal activities: In vitro and in vivo. Materials Chemistry and Physics, 248, 122898.

Kanniah, P., Chelliah, P., Thangapandi, J. R., Gnanadhas, G., Mahendran, V., & Robert, M. (2021). Green synthesis of antibacterial and cytotoxic silver nanoparticles by Piper nigrum seed extract and development of antibacterial silver-based chitosan nanocomposite. International Journal of Biological Macromolecules, 189, 18-33.

Kubitschek, K. M., A. R. J., & Zero, J. M. (2014). Development of jojoba oil (Simmondsia chinensis (Link) CK Schneid.) based nanoemulsions. Lat. Am. J. Pharm, 33(3), 459-63.

Lakshmanan, G., Sathiyaseelan, A., Kalaichelvan, P. T., & Murugesan, K. (2018). Plant-mediated synthesis of silver nanoparticles using fruit extract of Cleome viscosa L.: assessment of their antibacterial and anticancer activity. Karbala International Journal of Modern Science, 4(1), 61-68.

Masum, M. M. I., Siddiqa, M. M., Ali, K. A., Zhang, Y., Abdallah, Y., Ibrahim, E., & Li, B. (2019). Biogenic synthesis of silver nanoparticles using Phyllanthus emblica fruit extract and its inhibitory action against the pathogen Acidovorax oryzae strain RS-2 of rice bacterial brown stripe. Frontiers in microbiology, 10, 820.

Nayak, D., Ashe, S., Rauta, P. R., Kumari, M., & Nayak, B. (2016). Bark extract mediated green synthesis of silver nanoparticles: evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Materials Science and Engineering: C, 58, 44-52.

Oboh, G., Ademosun, A. O., Odubanjo, O. V., & Akinbola, I. A. (2013). Antioxidative properties and inhibition of key enzymes relevant to type-2 diabetes and hypertension by essential oils from black pepper. Advances in Pharmacological Sciences, 2013(4), 92604.

Ortega‐Arroyo, L., Martin‐Martinez, E. S., Aguilar‐Mendez, M. A., Cruz‐Orea, A., Hernandez‐Pérez, I., & Glorieux, C. (2013). Green synthesis method of silver nanoparticles using starch as capping agent applied the methodology of surface response. Starch‐Stärke, 65(9‐10), 814-821.

Padmanabhan, P., & Jangle, S. N. (2012). Evaluation of in-vitro anti-inflammatory activity of herbal preparation, a combination of four medicinal plants. International journal of basic and applied medical sciences, 2(1), 109-116.

Patil, M. P., Singh, R. D., Koli, P. B., Patil, K. T., Jagdale, B. S., Tipare, A. R., & Kim, G. D. (2018). Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microbial pathogenesis, 121, 184-189.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9-10), 1231-1237.

Rodrigues, E. D. C., Ferreira, A. M., Vilhena, J. C., Almeida, F. B., Cruz, R. A., Florentino, A. C., & Fernandes, C. P. (2014). Development of a larvicidal nanoemulsion with Copaiba (Copaifera duckei) oleoresin. Revista Brasileira de Farmacognosia, 24, 699-705.

Sambalova, O., Thorwarth, K., Heeb, N. V., Bleiner, D., Zhang, Y., Borgschulte, A., & Kroll, A. (2018). Carboxylate functional groups mediate interaction with silver nanoparticles in biofilm matrix. Acs Omega, 3(1), 724-733.

Sena, A. E. C., Ramos, A. L., & Faria, F. S. E. D. V. (2019). Avaliação da síntese de nanopartículas de prata sob diferentes concentrações do extrato de Copaíba multijuga (Heine). Scientia Naturalis, 1(1), 10-16.

Shafiq, S., Shakeel, F., Talegaonkar, S., Ahmad, F. J., Khar, R. K., & Ali, M. (2007). Development and bioavailability assessment of ramipril nanoemulsion formulation. European journal of pharmaceutics and biopharmaceutics, 66(2), 227-243.

Shaheen, T. I., El-Naggar, M. E., Hussein, J. S., El-Bana, M., Emara, E., El-Khayat, Z., & Hebeish, A. (2016). Antidiabetic assessment; in vivo study of gold and core-shell silver-gold nanoparticles on streptozotocin-induced diabetic rats. Biomedicine & Pharmacotherapy, 83, 865-875.

Shervani, Z., & Yamamoto, Y. (2011). Carbohydrate-directed synthesis of silver and gold nanoparticles: effect of the structure of carbohydrates and reducing agents on the size and morphology of the composites. Carbohydrate research, 346(5), 651-658.

Sruthi, D., ZACHARIAH, J. T., Leela, N. K., & Jayarajan, K. (2013). Correlation between chemical profiles of black pepper (Piper nigrum L.) var. Panniyur-1 collected from different locations. Journal of Medicinal Plants Research, 7(31), 2349-2357.

Sugumar, S., Clarke, S. K., Nirmala, M. J., Tyagi, B. K., Mukherjee, A., & Chandrasekaran, N. (2014). Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. Bulletin of entomological research, 104(3), 393-402.

Takooree, H., Aumeeruddy, M. Z., Rengasamy, K. R., Venugopala, K. N., Jeewon, R., Zengin, G., & Mahomoodally, M. F. (2019). A systematic review on black pepper (Piper nigrum L.): from folk uses to pharmacological applications. Critical reviews in food science and nutrition, 59(1), S210-S243.

Van Den Dool, H. A. N. D., & Kratz, P. D. (1963). A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr, 11, 463-71

Waterhouse, A. L. (2002). Determination of total phenolics. Current protocols in food analytical chemistry, 6(1), I1-1.

Yuan, C. G., Huo, C., Gui, B., Liu, P., & Zhang, C. (2017). Green synthesis of silver nanoparticles using Chenopodium aristatum L. stem extract and their catalytic/antibacterial activities. Journal of Cluster Science, 28, 1319-1333.

Downloads

Published

2024-11-29

How to Cite

Oliveira, J. P. M., Everton, G. O., & Mouchrek Filho, V. E. (2024). Green synthesis and biotechnological profile of silver nanoparticles using Piper nigrum L. essential oil. Ciência E Natura, 46, e74388. https://doi.org/10.5902/2179460X74388

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.