Síntese verde e perfil biotecnológico de nanopartículas de prata utilizando o óleo essencial de Piper nigrum L.

Autores

DOI:

https://doi.org/10.5902/2179460X74388

Palavras-chave:

Antioxidante, Anti-inflamatória, Caracterização

Resumo

Este avaliou o perfil químico, atividade antioxidante e anti-inflamatória, de forma inédita, de nanopartículas de prata (AgNPs) sintetizadas a partir da nanoemulsão do óleo essencial (NEO) de Piper nigrum. Para extração do óleo essencial (EO), utilizou-se a técnica de hidrodestilação e os constituintes químicos foram identificados por Cromatografia Gasosa Acoplada à Espectrometria de Massas (CG-EM). As nanoemulsões foram preparadas através do método de inversão de fases e a síntese das AgNPs foram realizadas pelo método de redução de AgNO3 utilizando a NEO. As AgNPs foram caracterizadas quanto ao perfil químico por Espectrofotometria UV-Vis e quanto ao tamanho de partícula por Espelhamento Dinâmico de Luz. A atividade antioxidante foi avaliada através do método de descoloração de radicais ABTS e a atividade anti-inflamatória por desnaturação proteica. O constituinte majoritário do EO foi o limoneno (42,41%). A banda máxima de SPR foi centrada em 420 nm indicando o pico característico das AgNPs. A menor IC50 16,26 mg/L para atividade antioxidante foi obtida para a AgNP pH 11. A IC50 que demonstrou o melhor resultado para a atividade anti-inflamatória foi a do pH 11 foi de 0,217 mg mL-1. Este estudo trouxe de forma inédita resultados para AgNPs de P. nigrum, demonstrando ser eficiente na melhoria das atividades testadas neste estudo, demonstrando também o efeito do pH nessas formulações. 

Downloads

Não há dados estatísticos.

Biografia do Autor

João Pedro Mesquita Oliveira, Universidade Federal do Maranhão

Bacharelado em Química em andamento pela Universidade Federal do Maranhão.

Gustavo Oliveira Everton, Universidade Federal do Maranhão

Mestrado em Saúde e Ambiente pela Universidade Federal do Maranhão.

Victor Elias Mouchrek Filho, Universidade Federal do Maranhão

Doutor em Química pela Universidade de São Paulo.

Referências

Abdul-Hafeez, E. Y., Karamova, N. S., & Ilinskaya, O. N. (2014). Antioxidant activity and total phenolic compound content of certain medicinal plants. Int. J. Biosci, 5(9), 213-222.

Acquaviva, R., Sorrenti, V., Santangelo, R., Cardile, V., Tomasello, B., Malfa, G., & Di Giacomo, C. (2016). Effects of an extract of Celtis aetnensis (Tornab.) Strobl twigs on human colon cancer cell cultures. Oncology Reports, 36(4), 2298-2304.

Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. Journal of advanced research, 7(1), 17-28.

Andrade, K. S. (2015). Extração e microencapsulamento de extratos de interesse biológico provenientes de pimenta-do-reino (Piper nigrum L.) e de pimenta rosa (Schinus terebinthifolius R.) (Tese de mestrado). Curso Engenharia de Alimentos, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brasil.

Behravan, M., Panahi, A. H., Naghizadeh, A., Ziaee, M., Mahdavi, R., & Mirzapour, A. (2019). Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. International journal of biological macromolecules, 124, 148-154.

Burdușel, A. C., Gherasim, O., Grumezescu, A. M., Mogoantă, L., Ficai, A., & Andronescu, E. (2018). Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomaterials, 8(9), 681.

Campos, K. E., Diniz, Y. S., Cataneo, A. C., Faine, L. A., Alves, M. J. Q. F., & Novelli, E. L. B. (2003). Hypoglycaemic and antioxidant effects of onion, Allium cepa: dietary onion addition, antioxidant activity and hypoglycaemic effects on diabetic rats. International journal of food sciences and nutrition, 54(3), 241-246.

Chung, I. M., Park, I., Seung-Hyun, K., Thiruvengadam, M., & Rajakumar, G. (2016). Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale research letters, 11(1), 1-14.

Diallo, M. S., Fromer, N. A., & Jhon, M. S. (2014). Nanotechnology for sustainable development: retrospective and outlook (pp. 1-16).

Journal of Nanoparticle Research, 15(2044), 1-16.

Ebrahiminezhad, A., Raee, M. J., Manafi, Z., Sotoodeh Jahromi, A., & Ghasemi, Y. (2016). Ancient and novel forms of silver in medicine and biomedicine. Journal of Advanced Medical Sciences and Applied Technologies, 2(1), 122-128.

Farhoosh, R., Johnny, S., Asnaashari, M., Molaahmadibahraseman, N., & Sharif, A. (2016). Structure–antioxidant activity relationships of o-hydroxyl, o-methoxy, and alkyl ester derivatives of p-hydroxybenzoic acid. Food chemistry, 194, 128-134.

Fries, C. N., Curvino, E. J., Chen, J. L., Permar, S. R., Fouda, G. G., & Collier, J. H. (2021). Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. Nature Nanotechnology, 16(4), 1-14.

Gomes, J. F., Garcia, A. C., Ferreira, E. B., Pires, C., Oliveira, V. L., Tremiliosi-Filho, G., & Gasparotto, L. H. (2015). New insights into the formation mechanism of Ag, Au and AgAu nanoparticles in aqueous alkaline media: alkoxides from alcohols, aldehydes and ketones as universal reducing agents. Physical Chemistry Chemical Physics, 17(33), 21683-21693.

Hebeish, A., Shaheen, T. I., El-Naggar, & M. E. (2016). Solid state synthesis of starch-capped silver nanoparticles. International journal of biological macromolecules, 87, 70-76.

Jebril, S., Jenana, R. K. B., & Dridi, C. (2020). Green synthesis of silver nanoparticles using Melia azedarach leaf extract and their

antifungal activities: In vitro and in vivo. Materials Chemistry and Physics, 248, 122898.

Kanniah, P., Chelliah, P., Thangapandi, J. R., Gnanadhas, G., Mahendran, V., & Robert, M. (2021). Green synthesis of antibacterial and cytotoxic silver nanoparticles by Piper nigrum seed extract and development of antibacterial silver-based chitosan nanocomposite. International Journal of Biological Macromolecules, 189, 18-33.

Kubitschek, K. M., A. R. J., & Zero, J. M. (2014). Development of jojoba oil (Simmondsia chinensis (Link) CK Schneid.) based nanoemulsions. Lat. Am. J. Pharm, 33(3), 459-63.

Lakshmanan, G., Sathiyaseelan, A., Kalaichelvan, P. T., & Murugesan, K. (2018). Plant-mediated synthesis of silver nanoparticles using fruit extract of Cleome viscosa L.: assessment of their antibacterial and anticancer activity. Karbala International Journal of Modern Science, 4(1), 61-68.

Masum, M. M. I., Siddiqa, M. M., Ali, K. A., Zhang, Y., Abdallah, Y., Ibrahim, E., & Li, B. (2019). Biogenic synthesis of silver nanoparticles using Phyllanthus emblica fruit extract and its inhibitory action against the pathogen Acidovorax oryzae strain RS-2 of rice bacterial brown stripe. Frontiers in microbiology, 10, 820.

Nayak, D., Ashe, S., Rauta, P. R., Kumari, M., & Nayak, B. (2016). Bark extract mediated green synthesis of silver nanoparticles: evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Materials Science and Engineering: C, 58, 44-52.

Oboh, G., Ademosun, A. O., Odubanjo, O. V., & Akinbola, I. A. (2013). Antioxidative properties and inhibition of key enzymes relevant to type-2 diabetes and hypertension by essential oils from black pepper. Advances in Pharmacological Sciences, 2013(4), 92604.

Ortega‐Arroyo, L., Martin‐Martinez, E. S., Aguilar‐Mendez, M. A., Cruz‐Orea, A., Hernandez‐Pérez, I., & Glorieux, C. (2013). Green synthesis method of silver nanoparticles using starch as capping agent applied the methodology of surface response. Starch‐Stärke, 65(9‐10), 814-821.

Padmanabhan, P., & Jangle, S. N. (2012). Evaluation of in-vitro anti-inflammatory activity of herbal preparation, a combination of four medicinal plants. International journal of basic and applied medical sciences, 2(1), 109-116.

Patil, M. P., Singh, R. D., Koli, P. B., Patil, K. T., Jagdale, B. S., Tipare, A. R., & Kim, G. D. (2018). Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microbial pathogenesis, 121, 184-189.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9-10), 1231-1237.

Rodrigues, E. D. C., Ferreira, A. M., Vilhena, J. C., Almeida, F. B., Cruz, R. A., Florentino, A. C., & Fernandes, C. P. (2014). Development of a larvicidal nanoemulsion with Copaiba (Copaifera duckei) oleoresin. Revista Brasileira de Farmacognosia, 24, 699-705.

Sambalova, O., Thorwarth, K., Heeb, N. V., Bleiner, D., Zhang, Y., Borgschulte, A., & Kroll, A. (2018). Carboxylate functional groups mediate interaction with silver nanoparticles in biofilm matrix. Acs Omega, 3(1), 724-733.

Sena, A. E. C., Ramos, A. L., & Faria, F. S. E. D. V. (2019). Avaliação da síntese de nanopartículas de prata sob diferentes concentrações do extrato de Copaíba multijuga (Heine). Scientia Naturalis, 1(1), 10-16.

Shafiq, S., Shakeel, F., Talegaonkar, S., Ahmad, F. J., Khar, R. K., & Ali, M. (2007). Development and bioavailability assessment of ramipril nanoemulsion formulation. European journal of pharmaceutics and biopharmaceutics, 66(2), 227-243.

Shaheen, T. I., El-Naggar, M. E., Hussein, J. S., El-Bana, M., Emara, E., El-Khayat, Z., & Hebeish, A. (2016). Antidiabetic assessment; in vivo study of gold and core-shell silver-gold nanoparticles on streptozotocin-induced diabetic rats. Biomedicine & Pharmacotherapy, 83, 865-875.

Shervani, Z., & Yamamoto, Y. (2011). Carbohydrate-directed synthesis of silver and gold nanoparticles: effect of the structure of carbohydrates and reducing agents on the size and morphology of the composites. Carbohydrate research, 346(5), 651-658.

Sruthi, D., ZACHARIAH, J. T., Leela, N. K., & Jayarajan, K. (2013). Correlation between chemical profiles of black pepper (Piper nigrum L.) var. Panniyur-1 collected from different locations. Journal of Medicinal Plants Research, 7(31), 2349-2357.

Sugumar, S., Clarke, S. K., Nirmala, M. J., Tyagi, B. K., Mukherjee, A., & Chandrasekaran, N. (2014). Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. Bulletin of entomological research, 104(3), 393-402.

Takooree, H., Aumeeruddy, M. Z., Rengasamy, K. R., Venugopala, K. N., Jeewon, R., Zengin, G., & Mahomoodally, M. F. (2019). A systematic review on black pepper (Piper nigrum L.): from folk uses to pharmacological applications. Critical reviews in food science and nutrition, 59(1), S210-S243.

Van Den Dool, H. A. N. D., & Kratz, P. D. (1963). A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr, 11, 463-71

Waterhouse, A. L. (2002). Determination of total phenolics. Current protocols in food analytical chemistry, 6(1), I1-1.

Yuan, C. G., Huo, C., Gui, B., Liu, P., & Zhang, C. (2017). Green synthesis of silver nanoparticles using Chenopodium aristatum L. stem extract and their catalytic/antibacterial activities. Journal of Cluster Science, 28, 1319-1333.

Publicado

2024-11-29

Como Citar

Oliveira, J. P. M., Everton, G. O., & Mouchrek Filho, V. E. (2024). Síntese verde e perfil biotecnológico de nanopartículas de prata utilizando o óleo essencial de Piper nigrum L. Ciência E Natura, 46, e74388. https://doi.org/10.5902/2179460X74388

Edição

Seção

Química

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 > >> 

Artigos Semelhantes

1 2 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.