Chemical profile and biotechnological potential larvicidal of a nanoemulsion (o/w) of the essential oil of Salvia officinalis L

Authors

DOI:

https://doi.org/10.5902/2179460X73725

Keywords:

Larvicide, Nanotechnology, Salvia officinalis

Abstract

This study aims to evaluate the chemical profile and biotechnological larvicidal potential of the nanoemulsion of the essential oil of Salvia officinalis L. The leaves of the plant were collected in São Luís, MA, from January to May 2021. The essential oil was extracted by hydrodistillation at 100°C for 3h. Chemical characterization was obtained by GC-MS. The oil-in-water nanoemulsion was formulated by the low-energy phase inversion method and subjected to thermodynamic stability tests. Antioxidant activity is performed by the spectrophotometric method of scavenging hydroxyl radicals from salicylic acid. For larvicidal activity, Aedes aegypti larvae were subjected to EO solutions and nanoemulsions in concentrations (10-100 mg L-1), larval mortality was evaluated, and the LC50 was determined by the Probit method. The majority compounds of the EO were: eucalyptol with 65.14%, camphor (30.63%), and α-Terpineol (1.53%). The formulations were characterized as nanoemulsions with a droplet size <200 nm. The PDI was <0.200, indicating a narrow size distribution. The antioxidant activity exhibited EC50 of 136.29 mg L-1 and 51.59 mg L-1. The nanoemulsion with larvicidal potential showed an LC50 of 71.17 mg L-1. The nanoemulsion showed bioactive potential for larvicidal action, which may be related to the presence of its chemical compounds, and its use is encouraged in the fight against Aedes aegypti.

Downloads

Download data is not yet available.

Author Biographies

Ana Patrícia Matos Pereira, Universidade Federal do Maranhão

Master's Degree in Health and Environment (PPGSA/UFMA): Biotechnology applied to health; Laboratório de Pesquisa de Pesquisa e Aplicação de Óleos Essenciais (LOEPAV/UFMA); Universidade Federal do Maranhão (UFMA)

Brendha Araújo de Sousa, Universidade Federal do Maranhão

Graduated in Chemistry from Universidade Federal do Maranhão - UFMA (2022). Researcher at the Laboratório de Pesquisa e Aplicação de Óleos Essenciais (LOEPAV/UFMA). Postgraduate in Chemistry Teaching Methodology and Environment and Sustainability from Centro Universitário Leonardo da Vinci - UNIASSELVI (2023).

Thaylanna Pinto de Lima, Universidade Federal de Minas Gerais

Graduating in Industrial Chemistry at Universidade Federal do Maranhão, UFMA, Brasil. Has experience in the field of Chemistry, with an emphasis on Organic Chemistry.

João Pedro Mesquita Oliveira, Universidade Federal do Maranhão

Graduating in Industrial Chemistry at Universidade Federal do Maranhão, UFMA, Brasil.

Cassiano Vasques Frota Guterres, Universidade Federal do Maranhão

Graduating in Chemistry at Universidade Federal do Maranhão, UFMA, Brasil.

Ana Paula Serejo Muniz, Universidade Federal do Maranhão

Degree in Pharmacy- Biochemistry at Universidade Federal do Maranhão (2007). Postgraduate in Clinical Cytology. PhD in Biotechnology (RENORBIO) at Universidade Federal do Maranhão, UFMA, Brasil.

Victor Elias Mouchrek Filho, Universidade Federal do Maranhão

Degree in Industrial Chemistry at Universidade Federal do Maranhão (1994). Master's degree in Chemistry and PhD in Chemistry at Universidade de São Paulo. Professor at the Department of Chemical Technology at UFMA.

Gustavo Oliveira Everton, Universidade Federal do Maranhão

Degree in Chemical Engineering and Master's degree in Health and Environment at Universidade Federal do Maranhão, UFMA. Researcher UFMA. PhD in progress in Chemistry at UFMA - IFMA.

References

Abdellaoui, K. et al. (2017). Chemical composition, toxicity and acetylcholinesterase inhibitory activity of Salvia officinalis essential oils against Tribolium confusum. J Entomol Zool Stud, 5(4), p. 1761-1768.

Alcala-Orozco, M. et al. (2019). Repellent and fumigant actions of the essential oils from Elettaria cardamomum (L.) Maton, Salvia officinalis (L.) Linnaeus, and Lippia origanoides (V.) Kunth against Tribolium castaneum and Ulomoides dermestoides. Journal of

Essential Oil Bearing Plants, 22(1), p. 18-30. doi:10.1080/0972060X.2019.1585966.

Ali, A. et al. (2015). Chemical composition and biological activity of four salvia essential oils and individual compounds against two species of mosquitoes. Journal of agricultural and food chemistry, 63(2), p.447-456. doi: 10.1021/jf504976f.

An, N. T. G. et al. (2020). Mosquito larvicidal activity, antimicrobial activity, and chemical compositions of essential oils from four species of Myrtaceae from central Vietnam. Plants, 9(4), p.544. doi: 10.3390/plants9040544.

Baz, M. M. et al. (2022). Larvicidal and adulticidal effects of some Egyptian oils against Culex pipiens. Scientific reports, 12(1), p. 4406. doi: 10.1038/s41598-022-08223-y.

Bolzan, A. A. et al. (2015). Avaliação da atividade antimicrobiana do óleo de orégano livre e em nanoemulsões. Disciplinarum Scientia|Naturais e Tecnológicas, 16(2),p.325-332. https://periodicos.ufn.edu.br/index.php/disciplinarumNT/article/view/1385.

Borges, R. S. et al. (2018). Anti-inflammatory activity of nanoemulsions of essential oil from Rosmarinus officinalis L.: in vitro and in zebrafish studies. Inflammopharmacology, 26(4), p.1057-1080. doi:10.1007/s10787-017-0438-9.

Campos, M. G. et al. (2003). Age-induced diminution of free radical scavenging capacity in bee pollens and the contribution of constituent flavonoids. Journal of agricultural and food chemistry, 51(3), p. 742-745.doi: 10.1021/jf0206466.

Castillo-Morales, R. M. et al. (2019). Mitochondrial affectation, DNA damage and AChE inhibition induced by Salvia officinalis essential oil on Aedes aegypti larvae. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 221, p.29-37.doi: 10.1016/j.cbpc.2019.03.006.

Castillo-Morales, R. M., & Duque, J. E. (2020). Dissuasive and biocidal activity of Salvia officinalis (Lamiaceae) with induction of malformations in Aedes aegypti (Diptera: Culicidae). Revista Colombiana de Entomología, 46(2).doi: 10.25100/socolen.v46i2.7683.

Cheng, S.S. et al. (2003). Bioatividade de óleos essenciais de plantas selecionadas contra as larvas do mosquito da febre amarela Aedes aegypti. Bioresource Technology, 89(1), p. 99-102.

De Souza Wuillda, A. C. J., Campos Martins, R. C., & Costa, F. D. N. (2019). Larvicidal activity of secondary plant metabolites in aedes aegypti control: An overview of the previous 6 years. Natural Product Communications, 14(7),p.1934578X19862893. doi:10.1177/1934578X19862893.

Dias, C. N.; Moraes, D. F. C. Óleos essenciais e seus compostos como larvicidas de Aedes aegypti L.(Diptera: Culicidae). Pesquisa em parasitologia, 113(2), p. 565-592.

El Hadri, A. et al. (2010). Cytotoxic activity of α-humulene and transcaryophyllene from Salvia officinalis in animal and human tumor cells. An R Acad Nac Farm, 76(3), p.343-356.

Ferreira, R. M. et al. (2019). A herbal oil in water nano-emulsion prepared through an ecofriendly approach affects two tropical disease vectors. Revista Brasileira de Farmacognosia, 29(6), p.778-784.doi: 10.1016/j.bjp.2019.05.003.

Forattini, O. P. (1962). Entomologia médica, vol. 1. Universidade de São Paulo, São Paulo, p.185-302.

Fouda, A. et al. (2020). Antimicrobial, antioxidant and larvicidal activities of spherical silver nanoparticles synthesized by endophytic

Streptomyces spp. Biological trace element research, 195, p.707-724.doi: 10.1007/s12011-019-01883-4.

Grandadam, M. (2007). Surveillance et diagnostic des arboviroses en France mètropolitaine. Revue Francophone des Laboratoires, 2007(396), p.75-84.doi: 10.1016/S1773-035X(07)80366-2.

Hamidpour, M., Hamidpour, R., Hamidpour, S., & Shahlari, M. (2014). Chemistry, pharmacology, and medicinal property of sage (Salvia) to prevent and cure illnesses such as obesity, diabetes, depression, dementia, lupus, autism, heart disease, and cancer. Journal of

traditional and complementary medicine, 4(2), p.82-88.doi: 10.4103/2225-4110.130373.

Jaiswal, M., Dudhe, R., & Sharma, P. K. (2015). Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech, 5, p.123-127.doi: 10.1007/s13205-014-0214-0.

Jakovljević, M. et al. (2019). Bioactive profile of various Salvia officinalis L. preparations. Plants, 8(3), p.55.doi: 10.3390/plants8030055.

Kurizky, P. S. et al. (2020). Opportunistic tropical infections in immunosuppressed patients. Best Practice & Research Clinical Rheumatology, 34(4), p.101509.doi: 10.1016/j.berh.2020.101509.

Lima, T. C. P. et al. (2020). DESENVOLVIMENTO DE NANOGEL DE Copaifera reticulata SOBRE A LESÃO MUSCULAR EM RATOS USANDO FONOFORESE. Saúde e Pesquisa, 13(1).doi: 10.17765/2176-9206.2020v13n1p181-192.

Lima-Camara, T. N. (2016). Arboviroses emergentes e novos desafios para a saúde pública no Brasil. Revista de Saúde Pública, 50, p. 36. doi: 10.1590/S1518-8787.2016050006791.

Melo, I. A. (2016). Avaliação do potencial anti-inflamatório, antioxidante e antimicrobiano de extratos de sálvia, poejo e cebolinho.2016. [Tese Doutorado em Tecnologia e Segurança Alimentar] - Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal.

Moraes-Lovison, M. et al. (2017). Nanoemulsions encapsulating oregano essential oil: Production, stability, antibacterial activity and incorporation in chicken pâté. Lwt, 77, p. 233-240. doi: 10.1016/j.lwt.2016.11.061.

Oliveira, A. E. et al. (2016). Development of a larvicidal nanoemulsion with Pterodon emarginatus Vogel oil. PLoS One, 11(1), p.e0145835. doi: 10.1371/journal.pone.0145835.

Pasquoto-Stigliani, T. et al. (2017). Nanocapsules containing neem (Azadirachta indica) oil: development, characterization, and toxicity evaluation. Scientific reports, 7(1), p.5929. doi: 10.1038/s41598-017-06092-4.

Rezai, S. et al. (2018). Effect of light intensity on leaf morphology, photosynthetic capacity, and chlorophyll content inSage (Salvia officinalis l.). Horticultural Science and Technology, 36(1), p.46-57. doi: 10.12972/kjhst.20180006.

Rguez, S. et al. (2019). Composição química e atividades biológicas de óleos essenciais de partes aéreas de Salvia officinalis afetadas por variações diurnas. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 153(2), p. 264-272.

Ríos, N., Stashenko, E. E., & Duque, J. E. (2017). Evaluation of the insecticidal activity of essential oils and their mixtures against Aedes aegypti (Diptera: Culicidae). Revista Brasileira de Entomologia, 61, p. 307-311. doi: https://doi.org/10.1016/j.rbe.2017.08.005.

Shafiq, S. et al. (2007). Development and bioavailability assessment of ramipril nanoemulsion formulation. European journal of pharmaceutics and biopharmaceutics, 66(2), p. 227-243. doi: 10.1016/j.ejpb.2006.10.014.

Silva, H. H. G. D. et al. (1995). Idade fisiológica dos ovos de aedes (stegomyia) aegypti (Linnaeus, 1762)(diptera, culicidae). Rev. Patol. Trop, p.269-73.

Silva, W. J. (2006). Atividade larvicida do óleo essencial de plantas existentes no estado de Sergipe contra Aedes aegypti Linn 2006.

[Dissertação Mestrado em Desenvolvimento e Meio Ambiente] – Universidade Federal de Sergipe, São Cristovão.

Smirnoff, N., & Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 28(4), p.1057-1060. doi: 10.1016/0031-9422(89)80182-7.

Solans, C., & Solé, I. (2012). Nano-emulsions: Formation by low-energy methods. Current opinion in colloid & interface science, 17(5), p.246-254. doi: 10.1016/j.cocis.2012.07.003.

Sousa, C. M. D. M. et al. (2007). Total phenolics and antioxidant activity of five medicinal plants. Quimica Nova, 30, p.351-355. doi: https://doi.org/10.1590/S0100-40422007000200021.

Sugumar, S. et al. (2014). Ultrasonic emulsification of eucalyptus oil nanoemulsion: antibacterial activity against Staphylococcus aureus and wound healing activity in Wistar rats. Ultrasonics sonochemistry, 21(3), p.1044-1049. doi: 10.1016/j.ultsench.2013.10.021.

Sundararajan, R., & Koduru, R. (2016). In vitro antioxidant activity on roots of Limnophila heterophylla. Free Radicals and Antioxidants, 6(2), p.178-185.doi: 10.5530/fra.2016.2.8.

Ugalde, M. L. et al. (2016). Actividad Antibacteriana y Antioxidante de los Aceites Esenciales Comerciales de Romero, Clavo de Olor, Orégano y Salvia. Revista de Ciencia y Tecnología, (25), p.54-61.

Velandia, S. A. et al. (2018). Atividade antiproliferativa de óleos essenciais de plantas cultivadas na Colômbia. Ato Biológico Colombiano , 23(2) ,p. 189-198.

Vosoughi, N. et al. (2018). Essential oil composition and total phenolic, flavonoid contents, and antioxidant activity of sage (Salvia officinalis L.) extract under chitosan application and irrigation frequencies. Industrial crops and products, 117, p.366-374.doi:

1016/j.indcrop.2018.03.021.

Walker, R. M., Decker, E. A., & McClements, D. J. (2015). Physical and oxidative stability of fish oil nanoemulsions produced by spontaneous emulsification: Effect of surfactant concentration and particle size. Journal of Food Engineering, 164, p.10-20.doi: 10.1016/j.jfoodeng.2015.04.028.

Wilmes, A. et al. (2011). Identification and dissection of the Nrf2 mediated oxidative stress pathway in human renal proximal tubule toxicity. Toxicology In Vitro, 25(3), p.613-622.doi: 10.1016/j.tiv.2010.12.009.

Zahed, K., Souttou, K., Hamza, F., & Zamoum, M. (2021). Chemical composition and larvicidal activities in vitro and in vivo of essential oils of Thymus vulgaris (L) and Lavandula angustifolia (Mill) against pine processionary moth Thaumetopoea pityocampa Den. & Schiff.

in Ain Defla (Algeria). Journal of Plant Diseases and Protection, 128, p.121-137.doi: 10.1007/s41348-020-00389-9.

Published

2024-09-06

How to Cite

Pereira, A. P. M., Sousa, B. A. de, Lima, T. P. de, Oliveira, J. P. M., Guterres, C. V. F., Muniz, A. P. S., Mouchrek Filho, V. E., & Everton, G. O. (2024). Chemical profile and biotechnological potential larvicidal of a nanoemulsion (o/w) of the essential oil of Salvia officinalis L. Ciência E Natura, 46. https://doi.org/10.5902/2179460X73725

Most read articles by the same author(s)

1 2 > >>