Chemical characterization and biotechnological potential of Salvia rosmarinus Spenn essential oil nanoemulsions
DOI:
https://doi.org/10.5902/2179460X73690Keywords:
Salvia rosmarinus, Nanoemulsions, Essential oilAbstract
This study aimed to determine the total phenolic compounds, evaluate the antioxidant and anti-inflammatory activities of nanoemulsions (O/W) and essential oils (EOs) from Salvia rosmarinus (rosemary). The plant material was obtained in the city of São Luís (MA). The EO was obtained by the hydrodistillation technique in a modified Clevenger extractor and the NOE's by phase inversion. The chemical constituents of EO were determined by GC-MS. The determination of total phenolic compounds (TPC) was performed by the Folin-Ciocalteu method. The anti-inflammatory activity was performed by the method of protein denaturation and the antioxidant activity by the spectrophotometric method of scavenging hydroxyl radicals. The GC-MS allowed quantifying 1,8-cineol (30.22%), α-pinene (22.14%), camphor (18.33%) and camphene (10.36%) as major components of the EO. The TPC of the EO was quantified at 26.74 mg EAT g-1 and the refractive index at 1.466 nD 25°. In the antioxidant activity test, an EC50 of 80.33 mgL-1 was obtained for the EO and from 19.56 to 408.85 mg L-1 for the nanoemulsions. In the anti-inflammatory activity assay, an EC50 of 62.46 mgL-1 was obtained for EO and 64.96 to 4220.25 mg L-1 for NOE's. Finally, the pharmacological activities tested showed efficient values for EC50, therefore considered active. This activity is attributed to its chemical compounds present, thus encouraging studies with this species aiming at its potential application in a formulated bioproduct.
Downloads
References
Altinier, G. et al. (2007). Characterization of topical antiinflammatory compounds in Rosmarinus officinalis L. Journal of agricultural and food chemistry, 55(5), 1718-1723. doi: https://doi.org/10.1021/jf062610+.
Assaeed, A. et al. (2020). Sesquiterpenes-rich essential oil from above ground parts of Pulicaria somalensis exhibited antioxidant activity and allelopathic effect on weeds. Agronomy, 10(3), 399. https://doi.org/10.3390/agronomy10030399. doi: https://doi.org/10.3390/agronomy10030399.
Atti-Santos, A. et al. (2005). Physico-chemical evaluation of Rosmarinus officinalis L. essential oils. Brazilian archives of biology and technology, 48(6), 1035-1039. doi: https://doi.org/10.1590/S1516-89132005000800020.
Babovic, N. et al. (2010). Supercritical carbon dioxide extraction of antioxidant fractions from selected Lamiaceae herbs and their antioxidant capacity. Innovative Food Science & Emerging Technologies, 11(1), 98-107. doi: https://doi.org/10.1016/j.ifset.2009.08.013.
Bandoni, A. Los recursos vegetales aromáticos en Latinoamérica, su aprovechamiento industrial para la producción de aromas y sabores. 2. ed. Buenos Aires (Argentina): Editorial de la Universidad Nacional de La Plata, 2003.
Bastianetto, S. et al. (2000). Neuroprotective abilities of resveratrol and other red wine constituents against nitric oxide‐related toxicity in cultured hippocampal neurons. British journal of pharmacology, 131(4), 711-720. doi: https://doi.org/10.1038/sj.bjp.0703626.
Borges, R. et al. (2018). Anti-inflammatory activity of nanoemulsions of essential oil from Rosmarinus officinalis L.: in vitro and in zebrafish studies. Inflammopharmacology, 26(4), 1057-1080. doi: https://doi.org/10.1007/s10787-017-0438-9.
Bouyahya, A. et al. (2017). Chemical composition of Mentha pulegium and Rosmarinus officinalis essential oils and their antileishmanial, antibacterial and antioxidant activities. Microbial pathogenesis, 111(2017), 41-49. doi: https://doi.org/10.1016/j.micpath.2017.08.015.
Campos, M. G. et al. (2003). Age-induced diminution of free radical scavenging capacity in bee pollens and the contribution of constituent flavonoids. Journal of agricultural and food chemistry, 51(3), 742-745. doi: https://doi.org/10.1021/jf0206466.
De Martino, L. et al. (2012). Chemistry and antigerminative activity of essential oils and monoterpenoids from Mediterranean Plants. Current Bioactive Compounds, 8(1), 13-49. doi: https://doi.org/10.2174/157340712799828179.
De Oliveira Carreiro, G. et al. (2020). Determinação dos índices físico-químicos dos óleos essenciais de Rosmarinus officinalis, Cymbopogon citratus e Cymbopogon winterianus. Research, Society and Development, 9(11), e4359119959-e4359119959.
De Oliveira, J. R., Camargo, S. E. A., & De Oliveira, L. D. (2019). Rosmarinus officinalis L.(rosemary) as therapeutic and prophylactic agent. Journal of biomedical science, 26(1), 1-22. https://jbiomedsci.biomedcentral.com/articles/10.1186/s12929-019-0499-8?fbclid=IwAR2AMZyJKZPpkkeDHe4IPAeNpZtTwYsPzK2DOF4Eydt3RwQn4bNJLGxbskY. doi: https://doi.org/10.1186/s12929-019-0499-8.
Donsì, F., & Ferrar, G. (2016). Nanoemulsões de óleo essencial como agentes antimicrobianos em alimentos. J. Biotechnol, 233, 106-120.
Duarte, J. L. et al. (2015). Evaluation of larvicidal activity of a nanoemulsion of Rosmarinus officinalis essential oil. Revista Brasileira de Farmacognosia, 25(2), 189-192. doi: https://doi.org/10.1016/j.bjp.2015.02.010.
Dúran, N. (2006). Nanotecnologia: introdução, preparação e caracterização de nanomateriais e exemplos de aplicação. 1.ed. São Paulo (Brasil): Editorial Artliber, 2006.
El Euch, S. K., Hassine, D. B., Cazaux, S., Bouzouita, N., & Bouajila, J. (2019). Salvia officinalis essential oil: Chemical analysis and evaluation of anti-enzymatic and antioxidant bioactivities. South African Journal of Botany, 120, 253-260.
El Jery, A., Hasan, M., Rashid, M. M., Al Mesfer, M. K., Danish, M., & Rebah, F. B. (2020). Phytochemical characterization, and antioxidant and antimicrobial activities of essential oil from leaves of the common sage L. from Abha, Saudi Arabia. Asian Biomedicine, 14(6), 261-270.
El Sawi, S. A. et al. (2019). Allelopathic potential of essential oils isolated from peels of three citrus species. Annals of Agricultural Sciences, 64(1), 89-94. doi: https://doi.org/10.1016/j.aoas.2019.04.003.
Farmacopeia brasileira. (2019). Agência Nacional de Vigilância Sanitária. Brasília: Anvisa, 6 ed., Brasília (Brasil): Editorial Anvisa.
Fronza, T. et al. Nanocosméticos: Em direção ao estabelecimento de Marcos Regulatórios. 1 ed., Rio Grande do Sul (Brasil): Editorial
UFRGS, 2007. http://repositorio2.unb.br/jspui/handle/10482/19398 https://doi.org/10.11606/T.9.2012.tde-13032013-105302
Hussain, A. I. et al. (2010). Rosmarinus officinalis essential oil: antiproliferative, antioxidant and antibacterial activities. Brazilian Journal of Microbiology, 41(4), 1070-1078. doi: https://doi.org/10.1590/S1517-83822010000400027.
Instituto Adolfo Lutz. (1985). Normas analíticas do Instituto Adolfo Lutz. v.1.:Métodos Químicos e Físicos para Análise de Alimentos. 3. ed. São Paulo (Brasil): Editorial IMESP.
Izquierdo, P. et al. (2002). Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir, 18(1), 26-30. doi: https://doi.org/10.1021/la010808c.
Jafari-Sales, A., & Pashazadeh, M. (2020). Study of chemical composition and antimicrobial properties of Rosemary (Rosmarinus officinalis) essential oil on Staphylococcus aureus and Escherichia coli in vitro. International Journal of Life Sciences and
Biotechnology, 3(1), 62-69. doi: https://doi.org/10.38001/ijlsb.693371.
Kubitschek-KM, A. R. J. et al. (2014). Development of jojoba oil (Simmondsia chinensis (Link) CK Schneid.) based nanoemulsions. Lat. Am. J. Pharm, 33(3), 459-63.
Lima, T. C. P. et al. (2020). DESENVOLVIMENTO DE NANOGEL DE Copaifera reticulata SOBRE A LESÃO MUSCULAR EM RATOS USANDO FONOFORESE. Saúde e Pesquisa, 13(1), 181-192. doi: https://doi.org/10.17765/2176-9206.2020v13n1p181-192.
Liu, P. et al. (2014). Flavonol glycosides and other phenolic compounds in buds and leaves of different varieties of black currant (Ribes nigrum L.) and changes during growing season. Food chemistry, 160(1), 180-189. doi: https://doi.org/10.1016/j.foodchem.2014.03.056.
Lou, S. N. et al. (2014). Soluble and insoluble phenolic compounds and antioxidant activity of immature calamondin affected by solvents and heat treatment. Food chemistry, 161(1), 246-253. doi: https://doi.org/10.1016/j.foodchem.2014.04.009.
Maccioni, A. et al. (2019). Inhibitory effect of rosemary essential oil, loaded in liposomes, on seed germination of Acacia saligna, an invasive species in Mediterranean ecosystems. Botany, 97(5), 283-291. doi: https://doi.org/10.1139/cjb-2018-0212.
Macedo, L. M. et al. (2020). Rosemary (Rosmarinus officinalis L., syn Salvia rosmarinus Spenn.) and It’s topical applications: a review. Plants, 9(5), 1-12. doi: https://doi.org/10.3390/plants9050651.
Maia, A. J. et al. (2014). Óleo essencial de alecrim no controle de doenças e na indução de resistência em videira. Pesquisa Agropecuária Brasileira, 49(5), 330-339. doi: https://doi.org/10.1590/S0100-204X2014000500002.
Moczkowska, M. et al. (2020). Effect of rosemary extract addition on oxidative stability and quality of hemp seed oil. Food and
Bioproducts Processing, 124(1), 33-47. doi: https://doi.org/10.1016/j.fbp.2020.08.002.
Noori, Soheila, Zeynali, Fariba, & Almasi, Hadi. (2018). Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food control, 84, 312-320.
Ostertag, F. et al. (2012). Low-energy formation of edible nanoemulsions: factors influencing droplet size produced by emulsion phase inversion. Journal of colloid and interface science, 388(1), 95-102. doi: https://doi.org/10.1016/j.jcis.2012.07.089.
Padmanabhan, P., & Jangle, S. N. (2012). Evaluation of in-vitro anti-inflammatory activity of herbal preparation, a combination of four medicinal plants. International journal of basic and applied medical sciences, 2(1), 109-116.
Rodrigues, E. D. C. et al. (2014). Development of a larvicidal nanoemulsion with Copaiba (Copaifera duckei) oleoresin. Revista Brasileira de Farmacognosia, 24(6), 699-705. doi: https://doi.org/10.1016/j.bjp.2014.10.013.
Shafiq, S. et al. (2007). Development and bioavailability assessment of ramipril nanoemulsion formulation. European journal of pharmaceutics and biopharmaceutics, 66(2), 227-243. doi: https://doi.org/10.1016/j.ejpb.2006.10.014.
Silva, A. (2011). Efeito do extrato aquoso de alecrim (Rosmarinus officinalis L.) sobre o estresse oxidativo em ratos diabéticos. Revista de Nutrição, 24(1), 121-130. doi: https://doi.org/10.1590/S1415-52732011000100012.
Silva, A. M. D. O. (2012). Efeito dos compostos fenólicos do alecrim (Rosmarinus officinalis L.) na inflamação aguda e sobre os marcadores de estresse oxidativo de ratos diabéticos. [Tese Doutorado em Nutrição experimental, Faculdade de Ciências Farmacêuticas da Universidade de São Paulo]. Repositório Institucional da USP.
Silva, M. D. S. A. et al. (2008). Atividade antimicrobiana e antiaderente in vitro do extrato de Rosmarinus officinalis Linn. sobre bactérias orais planctônicas. Revista Brasileira de Farmacognosia, 18(2), 236-240. doi: https://doi.org/10.1590/S0102-695X2008000200017.
Smirnoff, N., & Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 28(4), 1057-1060. doi: https://doi.org/10.1016/0031-9422(89)80182-7.
Soares, S. E. (2002). Ácidos fenólicos como antioxidantes. Revista de nutrição, 15(1), 71-81. doi: https://doi.org/10.1590/S1415-52732002000100008.
Sousa, C. M. D. M. et al. (2007). Total phenolics and antioxidant activity of five medicinal plants. Química nova, 30(2), 351-355. doi: https://doi.org/10.1590/S0100-40422007000200021.
Souza Filho, A. P. D. S. et al. (2009). Efeitos potencialmente alelopáticos dos óleos essenciais de Piper hispidinervium C. DC. e Pogostemon heyneanus Benth sobre plantas daninhas. Acta amazônica, 39(2), 389-395. doi: https://doi.org/10.1590/S0044-59672009000200018.
Sugumar, S. et al. (2014). Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. Bulletin of entomological research, 104(3), 393-402. doi: https://doi.org/10.1017/S0007485313000710.
Sundararajan, R., & Koduru, R. (2016). In vitro antioxidant activity on roots of Limnophila heterophylla. Free Radicals and Antioxidants, 6(2), 178-185. doi: https://doi.org/10.5530/fra.2016.2.8.
Syed, I., Banerjee, P., & Sarkar, P. (2020). Oil-in-water emulsions of geraniol and carvacrol improve the antibacterial activity of these compounds on raw goat meat surface during extended storage at 4 C. Food Control, 107, 106757.
Tadros, T. et al. (2004). Formation and stability of nano-emulsions. Advances in colloid and interface science, 108(20), 303-318. doi: https://doi.org/10.1016/j.cis.2003.10.023.
Takayama, C. et al. (2016). Chemical composition of Rosmarinus officinalis essential oil and antioxidant action against gastric damage induced by absolute ethanol in the rat. Asian Pacific journal of tropical biomedicine, 6(8), 677-681. doi: https://doi.org/10.1016/j.apjtb.2015.09.027.
Tiuzzi, M., & Furlan, M. R. (2016). Atividade antioxidante do alecrim. Revista Eletrônica Thesis, 26(1), 99-114. https://silo.tips/download/atividade-antioxidante-do-alecrim#.
Wanderley, A. L. (2016). Atividade antioxidante e antimicrobiana do óleo essencial de Rosmarinus officinalis L., cultivado em sistema orgânico sob diferentes condições, frente a bactérias causadoras de mastite bovina. [Dissertação de Mestrado em Agronomia, Universidade de Brasília]. Repositório Institucional da UNB.
Wang YuZhu, W. Y. et al. (2018). Effects of a natural antioxidant, polyphenol-rich rosemary (Rosmarinus officinalis L.) extract, on lipid stability of plant-derived omega-3 fatty-acid rich oil. Food Science and Technology, 89(37), 210-216. doi: https://doi.org/10.1016/j.lwt.2017.10.055.
Waterhouse, A. (2006). Folin-ciocalteau micro method for total phenol in wine. American Journal of Enology and viticulture, 48(1), 357-363.
Zaouali, Y. et al. (2010). Essential oils composition in two Rosmarinus officinalis L. varieties and incidence for antimicrobial and antioxidant activities. Food and chemical toxicology, 48(11), 3144-3152. doi: https://doi.org/10.1016/j.fct.2010.08.010.
Zhuang, H., Tang, N., & Yuan, Y. (2013). Purification and identification of antioxidant peptides from corn gluten meal. Journal of Functional Foods, 5(4), 1810-1821. doi: https://doi.org/10.1016/j.jff.2013.08.013.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ciência e Natura
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.