Chemical characterization and biotechnological potential of Salvia rosmarinus Spenn essential oil nanoemulsions

Authors

DOI:

https://doi.org/10.5902/2179460X73690

Keywords:

Salvia rosmarinus, Nanoemulsions, Essential oil

Abstract

This study aimed to determine the total phenolic compounds, evaluate the antioxidant and anti-inflammatory activities of nanoemulsions (O/W) and essential oils (EOs) from Salvia rosmarinus (rosemary). The plant material was obtained in the city of São Luís (MA). The EO was obtained by the hydrodistillation technique in a modified Clevenger extractor and the NOE's by phase inversion. The chemical constituents of EO were determined by GC-MS. The determination of total phenolic compounds (TPC) was performed by the Folin-Ciocalteu method. The anti-inflammatory activity was performed by the method of protein denaturation and the antioxidant activity by the spectrophotometric method of scavenging hydroxyl radicals. The GC-MS allowed quantifying 1,8-cineol (30.22%), α-pinene (22.14%), camphor (18.33%) and camphene (10.36%) as major components of the EO. The TPC of the EO was quantified at 26.74 mg EAT g-1 and the refractive index at 1.466 nD 25°. In the antioxidant activity test, an EC50 of 80.33 mgL-1 was obtained for the EO and from 19.56 to 408.85 mg L-1 for the nanoemulsions. In the anti-inflammatory activity assay, an EC50 of 62.46 mgL-1 was obtained for EO and 64.96 to 4220.25 mg L-1 for NOE's. Finally, the pharmacological activities tested showed efficient values ​​for EC50, therefore considered active. This activity is attributed to its chemical compounds present, thus encouraging studies with this species aiming at its potential application in a formulated bioproduct.

Downloads

Author Biographies

Karen Caroline Cantanhede Chaves, Universidade Federal do Maranhão

Estudante de Graduação em química bacharelado na Universidade Federal do Maranhão - UFMA

Ana Patrícia Matos Pereira, Universidade Federal do Maranhão

Doutoranda em Biotecnologia pela RENORBIO (UFMA). Mestre em Saúde e Ambiente pela Universidade Federal do Maranhão (2022). Pesquisadora no Laboratório de Pesquisa e Aplicação de Óleos Essenciais (LOEPAV/UFMA). Biomédica graduada pela Faculdade Estácio de São Luís (2016), através do Programa Universidade para Todos ( ProUni), com habilitação em Patologia Clínica. Especialista em Microbiologia Clínica pela Universidade Ceuma. Tem experiência em docência pelo Instituto Florence de ensino técnico nas disciplinas de Epidemiologia e Estudos Regionais. 

Brendha de Araújo de Sousa, Universidade Federal do Maranhão

.

Rodrigo de Aquino Almeida, Universidade Federal do Maranhão

.

Beatriz Jardim Rodrigues das Chagas, Universidade Federal do Maranhão

Graduanda em Química Industrial pela Universidade do Maranhão. Atualmente é integrante do Laboratório de Pesquisa e Aplicação de Óleos Essenciais (LOEPAV/UFMA), onde realiza pesquisas com óleos essenciais (nanoemulsões, microemulsões, antiinflamatório, antioxidante, antimicrobiano, perfil fitoquímico entre outros). Tem experiência com produtos naturais e química forense.

Marcelle Adriane Ataide Matos, Universidade Federal do Maranhão

.

Thaylanna Pinto de Lima, Universidade Federal do Maranhão

Atualmente é Pesquisadora Química de Produtos Naturais. da Universidade Federal do Maranhão e Iniciação Científica FAPEMA- PESQUISA do Fundação de Amparo à Pesquisa ao Desenvolv. Científico e Tecnológico - MA. Tem experiência na área de Química, com ênfase em Química Orgânica. 

Victor Elias Mouchrek Filho, Universidade Federal do Maranhão

.

Gustavo Oliveira Everton, Universidade Federal do Maranhão

.

References

Altinier, G. et al. (2007). Characterization of topical antiinflammatory compounds in Rosmarinus officinalis L. Journal of agricultural and food chemistry, 55(5), 1718-1723. doi: https://doi.org/10.1021/jf062610+. DOI: https://doi.org/10.1021/jf062610+

Assaeed, A. et al. (2020). Sesquiterpenes-rich essential oil from above ground parts of Pulicaria somalensis exhibited antioxidant activity and allelopathic effect on weeds. Agronomy, 10(3), 399. https://doi.org/10.3390/agronomy10030399. doi: https://doi.org/10.3390/agronomy10030399. DOI: https://doi.org/10.3390/agronomy10030399

Atti-Santos, A. et al. (2005). Physico-chemical evaluation of Rosmarinus officinalis L. essential oils. Brazilian archives of biology and technology, 48(6), 1035-1039. doi: https://doi.org/10.1590/S1516-89132005000800020. DOI: https://doi.org/10.1590/S1516-89132005000800020

Babovic, N. et al. (2010). Supercritical carbon dioxide extraction of antioxidant fractions from selected Lamiaceae herbs and their antioxidant capacity. Innovative Food Science & Emerging Technologies, 11(1), 98-107. doi: https://doi.org/10.1016/j.ifset.2009.08.013. DOI: https://doi.org/10.1016/j.ifset.2009.08.013

Bandoni, A. Los recursos vegetales aromáticos en Latinoamérica, su aprovechamiento industrial para la producción de aromas y sabores. 2. ed. Buenos Aires (Argentina): Editorial de la Universidad Nacional de La Plata, 2003.

Bastianetto, S. et al. (2000). Neuroprotective abilities of resveratrol and other red wine constituents against nitric oxide‐related toxicity in cultured hippocampal neurons. British journal of pharmacology, 131(4), 711-720. doi: https://doi.org/10.1038/sj.bjp.0703626. DOI: https://doi.org/10.1038/sj.bjp.0703626

Borges, R. et al. (2018). Anti-inflammatory activity of nanoemulsions of essential oil from Rosmarinus officinalis L.: in vitro and in zebrafish studies. Inflammopharmacology, 26(4), 1057-1080. doi: https://doi.org/10.1007/s10787-017-0438-9. DOI: https://doi.org/10.1007/s10787-017-0438-9

Bouyahya, A. et al. (2017). Chemical composition of Mentha pulegium and Rosmarinus officinalis essential oils and their antileishmanial, antibacterial and antioxidant activities. Microbial pathogenesis, 111(2017), 41-49. doi: https://doi.org/10.1016/j.micpath.2017.08.015. DOI: https://doi.org/10.1016/j.micpath.2017.08.015

Campos, M. G. et al. (2003). Age-induced diminution of free radical scavenging capacity in bee pollens and the contribution of constituent flavonoids. Journal of agricultural and food chemistry, 51(3), 742-745. doi: https://doi.org/10.1021/jf0206466. DOI: https://doi.org/10.1021/jf0206466

De Martino, L. et al. (2012). Chemistry and antigerminative activity of essential oils and monoterpenoids from Mediterranean Plants. Current Bioactive Compounds, 8(1), 13-49. doi: https://doi.org/10.2174/157340712799828179. DOI: https://doi.org/10.2174/157340712799828179

De Oliveira Carreiro, G. et al. (2020). Determinação dos índices físico-químicos dos óleos essenciais de Rosmarinus officinalis, Cymbopogon citratus e Cymbopogon winterianus. Research, Society and Development, 9(11), e4359119959-e4359119959. DOI: https://doi.org/10.33448/rsd-v9i11.9959

De Oliveira, J. R., Camargo, S. E. A., & De Oliveira, L. D. (2019). Rosmarinus officinalis L.(rosemary) as therapeutic and prophylactic agent. Journal of biomedical science, 26(1), 1-22. https://jbiomedsci.biomedcentral.com/articles/10.1186/s12929-019-0499-8?fbclid=IwAR2AMZyJKZPpkkeDHe4IPAeNpZtTwYsPzK2DOF4Eydt3RwQn4bNJLGxbskY. doi: https://doi.org/10.1186/s12929-019-0499-8. DOI: https://doi.org/10.1186/s12929-019-0499-8

Donsì, F., & Ferrar, G. (2016). Nanoemulsões de óleo essencial como agentes antimicrobianos em alimentos. J. Biotechnol, 233, 106-120. DOI: https://doi.org/10.1016/j.jbiotec.2016.07.005

Duarte, J. L. et al. (2015). Evaluation of larvicidal activity of a nanoemulsion of Rosmarinus officinalis essential oil. Revista Brasileira de Farmacognosia, 25(2), 189-192. doi: https://doi.org/10.1016/j.bjp.2015.02.010. DOI: https://doi.org/10.1016/j.bjp.2015.02.010

Dúran, N. (2006). Nanotecnologia: introdução, preparação e caracterização de nanomateriais e exemplos de aplicação. 1.ed. São Paulo (Brasil): Editorial Artliber, 2006.

El Euch, S. K., Hassine, D. B., Cazaux, S., Bouzouita, N., & Bouajila, J. (2019). Salvia officinalis essential oil: Chemical analysis and evaluation of anti-enzymatic and antioxidant bioactivities. South African Journal of Botany, 120, 253-260. DOI: https://doi.org/10.1016/j.sajb.2018.07.010

El Jery, A., Hasan, M., Rashid, M. M., Al Mesfer, M. K., Danish, M., & Rebah, F. B. (2020). Phytochemical characterization, and antioxidant and antimicrobial activities of essential oil from leaves of the common sage L. from Abha, Saudi Arabia. Asian Biomedicine, 14(6), 261-270. DOI: https://doi.org/10.1515/abm-2020-0035

El Sawi, S. A. et al. (2019). Allelopathic potential of essential oils isolated from peels of three citrus species. Annals of Agricultural Sciences, 64(1), 89-94. doi: https://doi.org/10.1016/j.aoas.2019.04.003. DOI: https://doi.org/10.1016/j.aoas.2019.04.003

Farmacopeia brasileira. (2019). Agência Nacional de Vigilância Sanitária. Brasília: Anvisa, 6 ed., Brasília (Brasil): Editorial Anvisa.

Fronza, T. et al. Nanocosméticos: Em direção ao estabelecimento de Marcos Regulatórios. 1 ed., Rio Grande do Sul (Brasil): Editorial

UFRGS, 2007. http://repositorio2.unb.br/jspui/handle/10482/19398 https://doi.org/10.11606/T.9.2012.tde-13032013-105302 DOI: https://doi.org/10.11606/T.9.2012.tde-13032013-105302

Hussain, A. I. et al. (2010). Rosmarinus officinalis essential oil: antiproliferative, antioxidant and antibacterial activities. Brazilian Journal of Microbiology, 41(4), 1070-1078. doi: https://doi.org/10.1590/S1517-83822010000400027. DOI: https://doi.org/10.1590/S1517-83822010000400027

Instituto Adolfo Lutz. (1985). Normas analíticas do Instituto Adolfo Lutz. v.1.:Métodos Químicos e Físicos para Análise de Alimentos. 3. ed. São Paulo (Brasil): Editorial IMESP.

Izquierdo, P. et al. (2002). Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir, 18(1), 26-30. doi: https://doi.org/10.1021/la010808c. DOI: https://doi.org/10.1021/la010808c

Jafari-Sales, A., & Pashazadeh, M. (2020). Study of chemical composition and antimicrobial properties of Rosemary (Rosmarinus officinalis) essential oil on Staphylococcus aureus and Escherichia coli in vitro. International Journal of Life Sciences and

Biotechnology, 3(1), 62-69. doi: https://doi.org/10.38001/ijlsb.693371. DOI: https://doi.org/10.38001/ijlsb.693371

Kubitschek-KM, A. R. J. et al. (2014). Development of jojoba oil (Simmondsia chinensis (Link) CK Schneid.) based nanoemulsions. Lat. Am. J. Pharm, 33(3), 459-63.

Lima, T. C. P. et al. (2020). DESENVOLVIMENTO DE NANOGEL DE Copaifera reticulata SOBRE A LESÃO MUSCULAR EM RATOS USANDO FONOFORESE. Saúde e Pesquisa, 13(1), 181-192. doi: https://doi.org/10.17765/2176-9206.2020v13n1p181-192. DOI: https://doi.org/10.17765/2176-9206.2020v13n1p181-192

Liu, P. et al. (2014). Flavonol glycosides and other phenolic compounds in buds and leaves of different varieties of black currant (Ribes nigrum L.) and changes during growing season. Food chemistry, 160(1), 180-189. doi: https://doi.org/10.1016/j.foodchem.2014.03.056. DOI: https://doi.org/10.1016/j.foodchem.2014.03.056

Lou, S. N. et al. (2014). Soluble and insoluble phenolic compounds and antioxidant activity of immature calamondin affected by solvents and heat treatment. Food chemistry, 161(1), 246-253. doi: https://doi.org/10.1016/j.foodchem.2014.04.009. DOI: https://doi.org/10.1016/j.foodchem.2014.04.009

Maccioni, A. et al. (2019). Inhibitory effect of rosemary essential oil, loaded in liposomes, on seed germination of Acacia saligna, an invasive species in Mediterranean ecosystems. Botany, 97(5), 283-291. doi: https://doi.org/10.1139/cjb-2018-0212. DOI: https://doi.org/10.1139/cjb-2018-0212

Macedo, L. M. et al. (2020). Rosemary (Rosmarinus officinalis L., syn Salvia rosmarinus Spenn.) and It’s topical applications: a review. Plants, 9(5), 1-12. doi: https://doi.org/10.3390/plants9050651. DOI: https://doi.org/10.3390/plants9050651

Maia, A. J. et al. (2014). Óleo essencial de alecrim no controle de doenças e na indução de resistência em videira. Pesquisa Agropecuária Brasileira, 49(5), 330-339. doi: https://doi.org/10.1590/S0100-204X2014000500002. DOI: https://doi.org/10.1590/S0100-204X2014000500002

Moczkowska, M. et al. (2020). Effect of rosemary extract addition on oxidative stability and quality of hemp seed oil. Food and

Bioproducts Processing, 124(1), 33-47. doi: https://doi.org/10.1016/j.fbp.2020.08.002. DOI: https://doi.org/10.1016/j.fbp.2020.08.002

Noori, Soheila, Zeynali, Fariba, & Almasi, Hadi. (2018). Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food control, 84, 312-320. DOI: https://doi.org/10.1016/j.foodcont.2017.08.015

Ostertag, F. et al. (2012). Low-energy formation of edible nanoemulsions: factors influencing droplet size produced by emulsion phase inversion. Journal of colloid and interface science, 388(1), 95-102. doi: https://doi.org/10.1016/j.jcis.2012.07.089. DOI: https://doi.org/10.1016/j.jcis.2012.07.089

Padmanabhan, P., & Jangle, S. N. (2012). Evaluation of in-vitro anti-inflammatory activity of herbal preparation, a combination of four medicinal plants. International journal of basic and applied medical sciences, 2(1), 109-116.

Rodrigues, E. D. C. et al. (2014). Development of a larvicidal nanoemulsion with Copaiba (Copaifera duckei) oleoresin. Revista Brasileira de Farmacognosia, 24(6), 699-705. doi: https://doi.org/10.1016/j.bjp.2014.10.013. DOI: https://doi.org/10.1016/j.bjp.2014.10.013

Shafiq, S. et al. (2007). Development and bioavailability assessment of ramipril nanoemulsion formulation. European journal of pharmaceutics and biopharmaceutics, 66(2), 227-243. doi: https://doi.org/10.1016/j.ejpb.2006.10.014. DOI: https://doi.org/10.1016/j.ejpb.2006.10.014

Silva, A. (2011). Efeito do extrato aquoso de alecrim (Rosmarinus officinalis L.) sobre o estresse oxidativo em ratos diabéticos. Revista de Nutrição, 24(1), 121-130. doi: https://doi.org/10.1590/S1415-52732011000100012. DOI: https://doi.org/10.1590/S1415-52732011000100012

Silva, A. M. D. O. (2012). Efeito dos compostos fenólicos do alecrim (Rosmarinus officinalis L.) na inflamação aguda e sobre os marcadores de estresse oxidativo de ratos diabéticos. [Tese Doutorado em Nutrição experimental, Faculdade de Ciências Farmacêuticas da Universidade de São Paulo]. Repositório Institucional da USP.

Silva, M. D. S. A. et al. (2008). Atividade antimicrobiana e antiaderente in vitro do extrato de Rosmarinus officinalis Linn. sobre bactérias orais planctônicas. Revista Brasileira de Farmacognosia, 18(2), 236-240. doi: https://doi.org/10.1590/S0102-695X2008000200017. DOI: https://doi.org/10.1590/S0102-695X2008000200017

Smirnoff, N., & Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 28(4), 1057-1060. doi: https://doi.org/10.1016/0031-9422(89)80182-7. DOI: https://doi.org/10.1016/0031-9422(89)80182-7

Soares, S. E. (2002). Ácidos fenólicos como antioxidantes. Revista de nutrição, 15(1), 71-81. doi: https://doi.org/10.1590/S1415-52732002000100008. DOI: https://doi.org/10.1590/S1415-52732002000100008

Sousa, C. M. D. M. et al. (2007). Total phenolics and antioxidant activity of five medicinal plants. Química nova, 30(2), 351-355. doi: https://doi.org/10.1590/S0100-40422007000200021. DOI: https://doi.org/10.1590/S0100-40422007000200021

Souza Filho, A. P. D. S. et al. (2009). Efeitos potencialmente alelopáticos dos óleos essenciais de Piper hispidinervium C. DC. e Pogostemon heyneanus Benth sobre plantas daninhas. Acta amazônica, 39(2), 389-395. doi: https://doi.org/10.1590/S0044-59672009000200018. DOI: https://doi.org/10.1590/S0044-59672009000200018

Sugumar, S. et al. (2014). Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. Bulletin of entomological research, 104(3), 393-402. doi: https://doi.org/10.1017/S0007485313000710. DOI: https://doi.org/10.1017/S0007485313000710

Sundararajan, R., & Koduru, R. (2016). In vitro antioxidant activity on roots of Limnophila heterophylla. Free Radicals and Antioxidants, 6(2), 178-185. doi: https://doi.org/10.5530/fra.2016.2.8. DOI: https://doi.org/10.5530/fra.2016.2.8

Syed, I., Banerjee, P., & Sarkar, P. (2020). Oil-in-water emulsions of geraniol and carvacrol improve the antibacterial activity of these compounds on raw goat meat surface during extended storage at 4 C. Food Control, 107, 106757. DOI: https://doi.org/10.1016/j.foodcont.2019.106757

Tadros, T. et al. (2004). Formation and stability of nano-emulsions. Advances in colloid and interface science, 108(20), 303-318. doi: https://doi.org/10.1016/j.cis.2003.10.023. DOI: https://doi.org/10.1016/S0001-8686(03)00157-X

Takayama, C. et al. (2016). Chemical composition of Rosmarinus officinalis essential oil and antioxidant action against gastric damage induced by absolute ethanol in the rat. Asian Pacific journal of tropical biomedicine, 6(8), 677-681. doi: https://doi.org/10.1016/j.apjtb.2015.09.027. DOI: https://doi.org/10.1016/j.apjtb.2015.09.027

Tiuzzi, M., & Furlan, M. R. (2016). Atividade antioxidante do alecrim. Revista Eletrônica Thesis, 26(1), 99-114. https://silo.tips/download/atividade-antioxidante-do-alecrim#.

Wanderley, A. L. (2016). Atividade antioxidante e antimicrobiana do óleo essencial de Rosmarinus officinalis L., cultivado em sistema orgânico sob diferentes condições, frente a bactérias causadoras de mastite bovina. [Dissertação de Mestrado em Agronomia, Universidade de Brasília]. Repositório Institucional da UNB.

Wang YuZhu, W. Y. et al. (2018). Effects of a natural antioxidant, polyphenol-rich rosemary (Rosmarinus officinalis L.) extract, on lipid stability of plant-derived omega-3 fatty-acid rich oil. Food Science and Technology, 89(37), 210-216. doi: https://doi.org/10.1016/j.lwt.2017.10.055. DOI: https://doi.org/10.1016/j.lwt.2017.10.055

Waterhouse, A. (2006). Folin-ciocalteau micro method for total phenol in wine. American Journal of Enology and viticulture, 48(1), 357-363.

Zaouali, Y. et al. (2010). Essential oils composition in two Rosmarinus officinalis L. varieties and incidence for antimicrobial and antioxidant activities. Food and chemical toxicology, 48(11), 3144-3152. doi: https://doi.org/10.1016/j.fct.2010.08.010. DOI: https://doi.org/10.1016/j.fct.2010.08.010

Zhuang, H., Tang, N., & Yuan, Y. (2013). Purification and identification of antioxidant peptides from corn gluten meal. Journal of Functional Foods, 5(4), 1810-1821. doi: https://doi.org/10.1016/j.jff.2013.08.013. DOI: https://doi.org/10.1016/j.jff.2013.08.013

Downloads

Published

2024-07-29

How to Cite

Chaves, K. C. C., Pereira, A. P. M., Sousa, B. de A. de, Almeida, R. de A., Chagas, B. J. R. das, Matos, M. A. A., Lima, T. P. de, Mouchrek Filho, V. E., & Everton, G. O. (2024). Chemical characterization and biotechnological potential of Salvia rosmarinus Spenn essential oil nanoemulsions. Ciência E Natura, 46, e73690. https://doi.org/10.5902/2179460X73690

Most read articles by the same author(s)

1 2 > >>