Volatile compound changes at Brunfelsia uniflora flower senescence
DOI:
https://doi.org/10.5902/2179460X83735Keywords:
Manacá, Volatiles, Headspace, Flower, Chemical compositionAbstract
The flower of Brunfelsia uniflora has few studies and no chemical characterization of volatiles by direct extraction via headspace and analysis by gas chromatography coupled to mass spectrometry (HS/GC-MS). This study provides background information on the flower senescence process. The objective of this study was to compare the chemical composition of volatiles from the purple and white flower stages of B. uniflora by HS/GC-MS. The volatile compounds from flowers incubated in headspace vials were analyzed by GC-MS. Oxygenated sesquiterpenes were the majority volatile class. The main volatile compounds for purple flower were trans-nerolidol (16.2%), trans-geranylgeraniol (5.8%), cis-linalool oxide (4.9%), and cis-cis-geranyl linalool (4.4%), and for white flower were trans-nerolidol (26.1%), trans-β-ocimene (9.5%), trans-geranylgeraniol (7.9%), and trans-γ-bisabolene (3.1%). Our results increased the knowledge of the types of volatile chemical compounds at different maturation stages of B. uniflora flower.
Downloads
References
Abel, C., Clauss, M., Schaub, A., Gershenzon, J., & Tholl, D. (2009). Floral and insect-induced volatile formation in Arabidopsis lyrata ssp. petraea, a perennial, outcrossing relative of A. thaliana. Planta, 230, 1–11. doi: 10.1007/s00425-009-0921-7.
Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry. 4th ed. Illinois: Allured Publishing Corporation Carol Stream.
Althaus-Ottmann, M. M., Leal, L., & Zuffellato-Ribas, K. C. (2006). Vegetative propagation of Brunfelsia uniflora (Pohl.) D. Don. (Manacá). Rev. Bras. Hortic. Ornam., 12(1), 31–36. https://biblat.unam.mx/pt/revista/revista-brasileira-de-horticultura-ornamental/articulo/propagacao-vegetativa-de-brunfelsia-uniflora-pohl-d-don-manaca.
Aprotosoaie, A.C., Hăncianu, M., Costache, I. I., & Miron, A. (2014). Linalool: a review on a key odorant molecule with valuable biological properties. Flavour Frag. J., 29(4), 193–219. doi: 10.1002/ffj.3197.
Bommareddy, A., Brozena, S., Steigerwalt, J., Landis, T., Hughes, S., Mabry, E., Knopp, A., VanWert, A. L., & Dwivedi, C. (2019). Medicinal properties of alpha-santalol, a naturally occurring constituent of sandalwood oil: review. Nat. Prod. Res., 33(4), 527–543. doi: 10.1080/14786419.2017.1399387.
Cazella, L. N., Glamočlija, J., Soković, M., Gonçalves, J. E., Linde, G. A., Colauto, N. B., & Gazim, Z. C. (2019). Antimicrobial activity of essential oil of Baccharis dracunculifolia DC (Asteraceae) aerial parts at flowering period. Front. Plant Sci., 10, 27. doi: 10.3389/fpls.2019.00027.
Chan, W. K., Tan, L. T.-H., Chan, K. G., Lee, L. H., & Goh, B. H. (2016). Nerolidol: a sesquiterpene alcohol with multi-faceted pharmacological and biological activities. Molecules, 21(5), 529. doi: 10.3390/molecules21050529.
Cilião Filho, M., Bertéli, M. B. D., Valle, J. S., Paccola-Meirelles, L. D., Linde, G. A., Barcellos, F. B., & Colauto, N. B. (2017). Genetic diversity and pectinolytic activity of epiphytic yeasts from grape carposphere. Genet. Mol. Res., 16(2), gmr16029698. doi: 10.4238/gmr16029698.
Coppée, A., Mathy, T., Cammaerts, M. C., Verheggen, F. J., Terzo, M., Iserbyt. S., Valterová, I., & Rasmont, P. (2011). Age-dependent attractivity of males’ sexual pheromones in Bombus terrestris (L.) [Hymenoptera, Apidae]. Chemoecology, 21, 75–82. doi: 10.1007/s00049-011-0070-x.
Croteau, R., & Karp, F. (1994). Origin of natural odorants. In: Müller, P. M., & Lamparsky, D. (Eds.). Perfumes. Dordrecht: Springer. doi: 10.1007/978-94-011-3826-0_4.
Duisken, M., Peiffer, T. H., Blömeke, B., & Hollender, J. (2008). Metabolism of delta-3-carene by human cytochrom 450 enzymes. Contact Dermatitis, 50, 122–212. doi: 10.1111/j.0105-1873.2004.00309ha.x.
Farré-Armengol, G., Filella, I., Llusià, J., & Peñuelas, J. (2017). β-Ocimene, a key floral and foliar volatile involved in multiple interactions between plants and other organisms. Molecules, 22(7), 1148. doi: 10.3390/molecules22071148.
Gałuszka, A., Migaszewski, Z., & Namieśnik, J. (2013). The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices. Trends Analyt. Chem., 50, 78–84. doi: 10.1016/j.trac.2013.04.010.
Gutbrod, K., Romer, J., & Dörmann, P. (2019). Phytol metabolism in plants. Prog. Lipid Res., 74, 1–17. doi: 10.1016/j.plipres.2019.01.002.
Hassler, M. (2021). (2004-2021): World plants. Synonymic checklist and distribution of the world flora. Version 12.3; last update May 28th, 2021. - www.worldplants.de. [accessed 2021 July 5]. https://www.catalogueoflife.org/data/taxon/NFSV.
Ho, H. J., Shirakawa, H., Giriwono, P. E., Ito, A., & Komai, M. (2018). A novel function of geranylgeraniol in regulating testosterone production. Biosci. Biotechnol. Biochem., 82(6), 956–962. doi: 10.1080/09168451.2017.1415129.
Jassbi, A, R., Zamanizadehnajari, S., & Baldwin, I. T. (2010). 17-Hydroxygeranyllinalool glycosides are major resistance traits of Nicotiana obtusifolia against attack from tobacco hornworm larvae. Phytochemistry, 71(10), 1115–1121. doi: 10.1016/j.phytochem.2010.04.014.
Jorge, L. F., Meniqueti, A. B., Silva, R. F., Santos, K. A., Da Silva, E. A., Gonçalves, J. E., De Rezende, C. M., Colauto, N. B., Gazim, Z. C., & Linde, G. A. (2017). Antioxidant activity and chemical composition of oleoresin from leaves and flowers of Brunfelsia uniflora. Genet. Mol. Res., 16(3), gmr16039714. doi: 10.4238/gmr16039714.
Kim, B. R., Kim, H. M., Jin, C. H., Kang, S. Y., Kim, J. B., Jeon, Y. G., Park, K. Y., Lee, I. S., & Han, A. R. (2020). Composition and antioxidant activities of volatile organic compounds in radiation-bred Coreopsis cultivars. Plants, 9, 717. doi: 10.3390/plants9060717.
Kiran, E., & Brenneecke, J. F. (1993). Supercritical fluid engineering science: fundamentals and applications. Washington: ACS Publications.
Kohlpaintner, C., Schulte, M., Falbe, J., Lappe, P., Weber, J., & Frey, G. D. (2013). Aldehydes, aliphatic. Ullmann’s Encycl. Ind. Chem., 1–31.
doi: 10.1002/14356007.a01_321.pub3.
Korankye, E. A., Lada, R., Asiedu, S., & Caldwell, C. (2017). Plant senescence: the role of volatile terpene compounds (VTCs). Am. J. Plant Sci., 8(12), 3120–3139. doi: 10.4236/AJPS.2017.812211.
Landmann, C., Fink, B., Festner, M., Dregus, M., Engel, K. H., & Schwab, W. (2007). Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia). Arch. Biochem. Biophys., 465(2), 417–429. doi: 10.1016/j.abb.2007.06.011.
Manjare, S. D., & Dhingra, K. (2019). Supercritical fluids in separation and purification: a review. Mater. Sci. Energy Technol., 2(3), 463–484. doi: 10.1016/j.mset.2019.04.005.
Marsola, S. J., Jorge, L. F., Meniqueti, A. B., Bertéli, M. B. D., Lima, T. E. F., Bezerra, J. L., Lopes, A. D., Gazim, Z. C., Valle, J. S., Colauto, N. B., & Linde, G. A. (2022). Endophytic fungi of Brunfelsia uniflora: isolation, cryopreservation, and determination of enzymatic and antioxidant activity. World J. Microbiol. Biotechnol., 38(6), 94. doi: 10.1007/s11274-022-03278-5.
Martin, S., Padilla, E., Ocete, M. A., Galvez, J., Jiménez, J., & Zarzuelo, A. (1993). Anti-inflammatory activity of the essential oil of Bupleurum fruticescens. Planta Med., 59(6), 533–536. doi: 10.1055/s-2006-959755.
Mazutti, M., Beledelli, B., Mossi, A. J., Cansian, R. L., Dariva, C., & Oliveira, J. V. (2006). Chemical characterization of Ocimum basilicum L. extracts obtained by high pressure CO2 extraction. Quim. Nova, 29(6), 1198–1202. doi: 10.1590/S0100-40422006000600010.
Nelson, D. L., & Cox, M. M. (2012). Lehninger principles of biochemistry. 8th ed. New York: W.H. Freeman and Macmillan Learning.
Palmer, J. K. (1984). Enzyme reactions and acceptability of plant foods. J. Chem. Educ., 61(4), 284. doi: 10.1021/ed061p284.
Pichersky, E., Raguso, R. A., Lewinsohn, E., & Croteau, R. (1994). Floral scent production in Clarkia (Onagraceae). I. localization and
developmental modulation of monoterpene emission and linalool synthase activity. Plant Physiol., 106(4), 1533–1540. doi:
1104/pp.106.4.1533.
PubChem. (2021). Open chemistry database at the National Institutes of Health (NIH). [Accessed July 5, 2021].
https://pubchem.ncbi.nlm.nih.gov/.
Qamar, S., Torres, Y. J. M., Parekh, H. S., & Falconer, J. R. (2021). Extraction of medicinal cannabinoids through supercritical carbon
dioxide technologies: a review. J. Chromatogr. B Biomed. Sci. Appl., 1167(15), 122581. doi: 10.1016/j.jchromb.2021.122581.
Sugauara, E. Y. Y., Sugauara, E. Y., Sugauara, R. R., Bortolucci, W. C., Fernandez, C. M. M., Gonçalves, J. E., Colauto, N. B., Gazim, Z. C., &
Linde, G. A. (2022). Larvicidal activity of Brunfelsia uniflora extracts on Aedes aegypti larvae. Nat. Prod. Res., 36(4), 1031–1037. doi:
1080/14786419.2020.1844685.
Sugauara, E. Y. Y., Sugauara, R. R, Bortolucci, W. C., Oliveira, H. L. M., Silva, E. S., Campos, C. F. A. A., Gonçalves, J. E., Colauto, N. B., Gazim,
Z. C., & Linde, G. A. (2019). Control of bovine tick [Rhipicephalus (Boophilus) microplus] with Brunfelsia uniflora leaf extract. Aust. J. Crop
Sci., 13(6), 903–910. doi: 10.21475/ajcs.19.13.06.p1653.
Thiesen, L. C., Colla, I. M., Silva, G. J., Kubiak, M. G., Faria, M. G. I., Gazim, Z. C., Linde, G. A., & Colauto, N. B. (2018). Antioxidant and
antimicrobial activity of Brunfelsia uniflora leaf extract. Arq. Cienc. Vet. Zool. UNIPAR, 21(3), 93-97. doi: 10.25110/arqvet.v21i3.7203.
Thiesen, L. C., Sugauara, E. Y. Y., Tešević, V., Glamočlija, J., Soković, M., Gonçalves, J. E., Gazim, Z. C., Linde. G. A., & Colauto, N. B. (2017).
Antimicrobial activity and chemical composition of Brunfelsia uniflora flower oleoresin extracted by supercritical carbon dioxide. Genet.
Mol. Res., 16(2), gmr16029548. doi: 10.4238/gmr16029548.
Tholl, D. (2015). Biosynthesis and biological functions of terpenoids in plants. In: Schrader, J., & Bohlmann, J. (Eds.). Biotechnology of
isoprenoids. Advances in Biochemical Engineering/Biotechnology Series. Vol 148, p. 63-106. Springer. doi: 10.1007/10_2014_295.
Tipler, A. (2013). An introduction to headspace sampling in gas chromatography: fundamentals and theory. Waltham: Perkin-Elmer.
Retrieved from: https://www.perkinelmer.com/PDFs/downloads/GDE_Intro_to_Headspace.pdf.
Viana, A. R., Nicola, I., Franco, C., Caetano, P. A., Jacob-Lopes, E., Zepka, L. Q., Santos, D., Flores, E. M. M., Vizzotto, B. S., Wolf, K., Ourique, A. F., Mortari, S. R., Rhoden, C. R. B., & Krause, L. M. F. (2023). Phytochemical characterization and toxicological activity attributed to the acetonic extract of South American Vassobia breviflora. J. Toxicol. Environ. Health, Part A, 86(21), 816–832. doi: 10.1080/15287394.2023.2254316.
Viana, A. R., Noro, B. G., Santos, D., Wolf, K., Das Neves, Y. D., Moresco, R. N., Ourique, A. F., Flores, E. M. M., Rhoden, C. R. B., Krause, L.
M. F., & Vizzotto, B. S. (2022). Detection of new phytochemical compounds from Vassobia breviflora (Sendtn.) Hunz: antioxidant, cytotoxic, and antibacterial activity of the hexane extract. J. Toxicol. Environ. Health, Part A, 86(2–3), 51–68. doi:10.1080/15287394.2022.2156956.
Xu, L., Liu, H., Ma, Y., Wu, C., Li, R., & Chao, Z. (2019). Comparative study of volatile components from male and female flower buds of Populus × tomentosa by HS-SPME-GC-MS. Nat. Prod. Res., 333(14), 2105–2108. doi: 10.1080/14786419.2018.1483929.
Yu, X. D., Pickett, J., Ma, Y. Z., Bruce, T., Napier, J., Jones, H. D., & Xia, L. Q. (2012). Metabolic engineering of plant-derived (e)-β-farnesene synthase genes for a novel type of aphid-resistant genetically modified crop plants. J. Integr. Plant Biol., 54(5), 282–299. doi: 10.1111/j.1744-7909.2012.01107.x.
Zhang, S. X., Chai, X. S., & Jiang, R. (2017). Accurate determination of residual acrylic acid in superabsorbent polymer of hygiene products by headspace gas chromatography. J. Chromatogr. A, 1485, 20–23. doi: 10.1016/j.chroma.2017.01.023.
Zhang, X., & Dwivedi, C. (2011). Skin cancer chemoprevention by α-santalol. Front. Biosci. (Schol. Ed.), 3, 777–787. doi: 10.2741/s186.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ciência e Natura
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.