Volatile compound changes at Brunfelsia uniflora flower senescence

Authors

DOI:

https://doi.org/10.5902/2179460X83735

Keywords:

Manacá, Volatiles, Headspace, Flower, Chemical composition

Abstract

The flower of Brunfelsia uniflora has few studies and no chemical characterization of volatiles by direct extraction via headspace and analysis by gas chromatography coupled to mass spectrometry (HS/GC-MS). This study provides background information on the flower senescence process. The objective of this study was to compare the chemical composition of volatiles from the purple and white flower stages of B. uniflora by HS/GC-MS. The volatile compounds from flowers incubated in headspace vials were analyzed by GC-MS. Oxygenated sesquiterpenes were the majority volatile class. The main volatile compounds for purple flower were trans-nerolidol (16.2%), trans-geranylgeraniol (5.8%), cis-linalool oxide (4.9%), and cis-cis-geranyl linalool (4.4%), and for white flower were trans-nerolidol (26.1%), trans-β-ocimene (9.5%), trans-geranylgeraniol (7.9%), and trans-γ-bisabolene (3.1%). Our results increased the knowledge of the types of volatile chemical compounds at different maturation stages of B. uniflora flower.

Downloads

Author Biographies

Nelson Barros Colauto, Universidade Federal da Bahia

PhD in Agronomy from the Universidade Estadual Paulista Júlio de Mesquita Filho.

Hérika Line Marko de Oliveira, Universidade Paranaense

Master's degree in Biotechnology Applied to Agriculture from Universidade Paranaense.

Rodrigo Sadao Inumaro, Centro Universitário Cesumar

Master's degree in Clean Technologies from the Higher Education Center of Maringá.

Fabiane Cerqueira de Almeida, Universidade Federal da Bahia

Master's degree in Food Science from the Federal University of Bahia.

Ederlan de Souza Ferreira, Universidade Federal da Bahia

PhD in Food and Nutrition from Universidade Estadual Paulista Júlio de Mesquita Filho.

Carolina Oliveira de Souza, Universidade Federal da Bahia

PhD in Medicine and Health from the Federal University of Bahia.

José Eduardo Gonçalves, Centro Universitário Cesumar

PhD in Chemistry from the State University of Campinas.

Daniel de Lima, Centro Universitário UniFatecie

Master's degree in Applied Mathematics from the Federal University of Paraná.

Giani Andrea Linde, Centro Universitário UniFatecie

PhD in Chemical Engineering from the State University of Maringá.

Zilda Cristiani Gazim, Universidade Paranaense

PhD in Pharmaceutical Sciences from the State University of Maringá.

References

Abel, C., Clauss, M., Schaub, A., Gershenzon, J., & Tholl, D. (2009). Floral and insect-induced volatile formation in Arabidopsis lyrata ssp. petraea, a perennial, outcrossing relative of A. thaliana. Planta, 230, 1–11. doi: 10.1007/s00425-009-0921-7. DOI: https://doi.org/10.1007/s00425-009-0921-7

Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry. 4th ed. Illinois: Allured Publishing Corporation Carol Stream.

Althaus-Ottmann, M. M., Leal, L., & Zuffellato-Ribas, K. C. (2006). Vegetative propagation of Brunfelsia uniflora (Pohl.) D. Don. (Manacá). Rev. Bras. Hortic. Ornam., 12(1), 31–36. https://biblat.unam.mx/pt/revista/revista-brasileira-de-horticultura-ornamental/articulo/propagacao-vegetativa-de-brunfelsia-uniflora-pohl-d-don-manaca. DOI: https://doi.org/10.14295/rbho.v12i1.4

Aprotosoaie, A.C., Hăncianu, M., Costache, I. I., & Miron, A. (2014). Linalool: a review on a key odorant molecule with valuable biological properties. Flavour Frag. J., 29(4), 193–219. doi: 10.1002/ffj.3197. DOI: https://doi.org/10.1002/ffj.3197

Bommareddy, A., Brozena, S., Steigerwalt, J., Landis, T., Hughes, S., Mabry, E., Knopp, A., VanWert, A. L., & Dwivedi, C. (2019). Medicinal properties of alpha-santalol, a naturally occurring constituent of sandalwood oil: review. Nat. Prod. Res., 33(4), 527–543. doi: 10.1080/14786419.2017.1399387. DOI: https://doi.org/10.1080/14786419.2017.1399387

Cazella, L. N., Glamočlija, J., Soković, M., Gonçalves, J. E., Linde, G. A., Colauto, N. B., & Gazim, Z. C. (2019). Antimicrobial activity of essential oil of Baccharis dracunculifolia DC (Asteraceae) aerial parts at flowering period. Front. Plant Sci., 10, 27. doi: 10.3389/fpls.2019.00027. DOI: https://doi.org/10.3389/fpls.2019.00027

Chan, W. K., Tan, L. T.-H., Chan, K. G., Lee, L. H., & Goh, B. H. (2016). Nerolidol: a sesquiterpene alcohol with multi-faceted pharmacological and biological activities. Molecules, 21(5), 529. doi: 10.3390/molecules21050529. DOI: https://doi.org/10.3390/molecules21050529

Cilião Filho, M., Bertéli, M. B. D., Valle, J. S., Paccola-Meirelles, L. D., Linde, G. A., Barcellos, F. B., & Colauto, N. B. (2017). Genetic diversity and pectinolytic activity of epiphytic yeasts from grape carposphere. Genet. Mol. Res., 16(2), gmr16029698. doi: 10.4238/gmr16029698. DOI: https://doi.org/10.4238/gmr16029698

Coppée, A., Mathy, T., Cammaerts, M. C., Verheggen, F. J., Terzo, M., Iserbyt. S., Valterová, I., & Rasmont, P. (2011). Age-dependent attractivity of males’ sexual pheromones in Bombus terrestris (L.) [Hymenoptera, Apidae]. Chemoecology, 21, 75–82. doi: 10.1007/s00049-011-0070-x. DOI: https://doi.org/10.1007/s00049-011-0070-x

Croteau, R., & Karp, F. (1994). Origin of natural odorants. In: Müller, P. M., & Lamparsky, D. (Eds.). Perfumes. Dordrecht: Springer. doi: 10.1007/978-94-011-3826-0_4. DOI: https://doi.org/10.1007/978-94-011-3826-0_4

Duisken, M., Peiffer, T. H., Blömeke, B., & Hollender, J. (2008). Metabolism of delta-3-carene by human cytochrom 450 enzymes. Contact Dermatitis, 50, 122–212. doi: 10.1111/j.0105-1873.2004.00309ha.x. DOI: https://doi.org/10.1111/j.0105-1873.2004.00309ha.x

Farré-Armengol, G., Filella, I., Llusià, J., & Peñuelas, J. (2017). β-Ocimene, a key floral and foliar volatile involved in multiple interactions between plants and other organisms. Molecules, 22(7), 1148. doi: 10.3390/molecules22071148. DOI: https://doi.org/10.3390/molecules22071148

Gałuszka, A., Migaszewski, Z., & Namieśnik, J. (2013). The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices. Trends Analyt. Chem., 50, 78–84. doi: 10.1016/j.trac.2013.04.010. DOI: https://doi.org/10.1016/j.trac.2013.04.010

Gutbrod, K., Romer, J., & Dörmann, P. (2019). Phytol metabolism in plants. Prog. Lipid Res., 74, 1–17. doi: 10.1016/j.plipres.2019.01.002. DOI: https://doi.org/10.1016/j.plipres.2019.01.002

Hassler, M. (2021). (2004-2021): World plants. Synonymic checklist and distribution of the world flora. Version 12.3; last update May 28th, 2021. - www.worldplants.de. [accessed 2021 July 5]. https://www.catalogueoflife.org/data/taxon/NFSV.

Ho, H. J., Shirakawa, H., Giriwono, P. E., Ito, A., & Komai, M. (2018). A novel function of geranylgeraniol in regulating testosterone production. Biosci. Biotechnol. Biochem., 82(6), 956–962. doi: 10.1080/09168451.2017.1415129. DOI: https://doi.org/10.1080/09168451.2017.1415129

Jassbi, A, R., Zamanizadehnajari, S., & Baldwin, I. T. (2010). 17-Hydroxygeranyllinalool glycosides are major resistance traits of Nicotiana obtusifolia against attack from tobacco hornworm larvae. Phytochemistry, 71(10), 1115–1121. doi: 10.1016/j.phytochem.2010.04.014. DOI: https://doi.org/10.1016/j.phytochem.2010.04.014

Jorge, L. F., Meniqueti, A. B., Silva, R. F., Santos, K. A., Da Silva, E. A., Gonçalves, J. E., De Rezende, C. M., Colauto, N. B., Gazim, Z. C., & Linde, G. A. (2017). Antioxidant activity and chemical composition of oleoresin from leaves and flowers of Brunfelsia uniflora. Genet. Mol. Res., 16(3), gmr16039714. doi: 10.4238/gmr16039714. DOI: https://doi.org/10.4238/gmr16039714

Kim, B. R., Kim, H. M., Jin, C. H., Kang, S. Y., Kim, J. B., Jeon, Y. G., Park, K. Y., Lee, I. S., & Han, A. R. (2020). Composition and antioxidant activities of volatile organic compounds in radiation-bred Coreopsis cultivars. Plants, 9, 717. doi: 10.3390/plants9060717. DOI: https://doi.org/10.3390/plants9060717

Kiran, E., & Brenneecke, J. F. (1993). Supercritical fluid engineering science: fundamentals and applications. Washington: ACS Publications. DOI: https://doi.org/10.1021/bk-1992-0514

Kohlpaintner, C., Schulte, M., Falbe, J., Lappe, P., Weber, J., & Frey, G. D. (2013). Aldehydes, aliphatic. Ullmann’s Encycl. Ind. Chem., 1–31.

doi: 10.1002/14356007.a01_321.pub3. DOI: https://doi.org/10.1002/14356007.a01_321.pub3

Korankye, E. A., Lada, R., Asiedu, S., & Caldwell, C. (2017). Plant senescence: the role of volatile terpene compounds (VTCs). Am. J. Plant Sci., 8(12), 3120–3139. doi: 10.4236/AJPS.2017.812211. DOI: https://doi.org/10.4236/ajps.2017.812211

Landmann, C., Fink, B., Festner, M., Dregus, M., Engel, K. H., & Schwab, W. (2007). Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia). Arch. Biochem. Biophys., 465(2), 417–429. doi: 10.1016/j.abb.2007.06.011. DOI: https://doi.org/10.1016/j.abb.2007.06.011

Manjare, S. D., & Dhingra, K. (2019). Supercritical fluids in separation and purification: a review. Mater. Sci. Energy Technol., 2(3), 463–484. doi: 10.1016/j.mset.2019.04.005. DOI: https://doi.org/10.1016/j.mset.2019.04.005

Marsola, S. J., Jorge, L. F., Meniqueti, A. B., Bertéli, M. B. D., Lima, T. E. F., Bezerra, J. L., Lopes, A. D., Gazim, Z. C., Valle, J. S., Colauto, N. B., & Linde, G. A. (2022). Endophytic fungi of Brunfelsia uniflora: isolation, cryopreservation, and determination of enzymatic and antioxidant activity. World J. Microbiol. Biotechnol., 38(6), 94. doi: 10.1007/s11274-022-03278-5. DOI: https://doi.org/10.1007/s11274-022-03278-5

Martin, S., Padilla, E., Ocete, M. A., Galvez, J., Jiménez, J., & Zarzuelo, A. (1993). Anti-inflammatory activity of the essential oil of Bupleurum fruticescens. Planta Med., 59(6), 533–536. doi: 10.1055/s-2006-959755. DOI: https://doi.org/10.1055/s-2006-959755

Mazutti, M., Beledelli, B., Mossi, A. J., Cansian, R. L., Dariva, C., & Oliveira, J. V. (2006). Chemical characterization of Ocimum basilicum L. extracts obtained by high pressure CO2 extraction. Quim. Nova, 29(6), 1198–1202. doi: 10.1590/S0100-40422006000600010. DOI: https://doi.org/10.1590/S0100-40422006000600010

Nelson, D. L., & Cox, M. M. (2012). Lehninger principles of biochemistry. 8th ed. New York: W.H. Freeman and Macmillan Learning.

Palmer, J. K. (1984). Enzyme reactions and acceptability of plant foods. J. Chem. Educ., 61(4), 284. doi: 10.1021/ed061p284. DOI: https://doi.org/10.1021/ed061p284

Pichersky, E., Raguso, R. A., Lewinsohn, E., & Croteau, R. (1994). Floral scent production in Clarkia (Onagraceae). I. localization and

developmental modulation of monoterpene emission and linalool synthase activity. Plant Physiol., 106(4), 1533–1540. doi: DOI: https://doi.org/10.1104/pp.106.4.1533

1104/pp.106.4.1533.

PubChem. (2021). Open chemistry database at the National Institutes of Health (NIH). [Accessed July 5, 2021].

https://pubchem.ncbi.nlm.nih.gov/.

Qamar, S., Torres, Y. J. M., Parekh, H. S., & Falconer, J. R. (2021). Extraction of medicinal cannabinoids through supercritical carbon

dioxide technologies: a review. J. Chromatogr. B Biomed. Sci. Appl., 1167(15), 122581. doi: 10.1016/j.jchromb.2021.122581. DOI: https://doi.org/10.1016/j.jchromb.2021.122581

Sugauara, E. Y. Y., Sugauara, E. Y., Sugauara, R. R., Bortolucci, W. C., Fernandez, C. M. M., Gonçalves, J. E., Colauto, N. B., Gazim, Z. C., &

Linde, G. A. (2022). Larvicidal activity of Brunfelsia uniflora extracts on Aedes aegypti larvae. Nat. Prod. Res., 36(4), 1031–1037. doi: DOI: https://doi.org/10.1080/14786419.2020.1844685

1080/14786419.2020.1844685.

Sugauara, E. Y. Y., Sugauara, R. R, Bortolucci, W. C., Oliveira, H. L. M., Silva, E. S., Campos, C. F. A. A., Gonçalves, J. E., Colauto, N. B., Gazim,

Z. C., & Linde, G. A. (2019). Control of bovine tick [Rhipicephalus (Boophilus) microplus] with Brunfelsia uniflora leaf extract. Aust. J. Crop

Sci., 13(6), 903–910. doi: 10.21475/ajcs.19.13.06.p1653. DOI: https://doi.org/10.21475/ajcs.19.13.06.p1653

Thiesen, L. C., Colla, I. M., Silva, G. J., Kubiak, M. G., Faria, M. G. I., Gazim, Z. C., Linde, G. A., & Colauto, N. B. (2018). Antioxidant and

antimicrobial activity of Brunfelsia uniflora leaf extract. Arq. Cienc. Vet. Zool. UNIPAR, 21(3), 93-97. doi: 10.25110/arqvet.v21i3.7203.

Thiesen, L. C., Sugauara, E. Y. Y., Tešević, V., Glamočlija, J., Soković, M., Gonçalves, J. E., Gazim, Z. C., Linde. G. A., & Colauto, N. B. (2017).

Antimicrobial activity and chemical composition of Brunfelsia uniflora flower oleoresin extracted by supercritical carbon dioxide. Genet.

Mol. Res., 16(2), gmr16029548. doi: 10.4238/gmr16029548. DOI: https://doi.org/10.4238/gmr16029548

Tholl, D. (2015). Biosynthesis and biological functions of terpenoids in plants. In: Schrader, J., & Bohlmann, J. (Eds.). Biotechnology of

isoprenoids. Advances in Biochemical Engineering/Biotechnology Series. Vol 148, p. 63-106. Springer. doi: 10.1007/10_2014_295. DOI: https://doi.org/10.1007/10_2014_295

Tipler, A. (2013). An introduction to headspace sampling in gas chromatography: fundamentals and theory. Waltham: Perkin-Elmer.

Retrieved from: https://www.perkinelmer.com/PDFs/downloads/GDE_Intro_to_Headspace.pdf.

Viana, A. R., Nicola, I., Franco, C., Caetano, P. A., Jacob-Lopes, E., Zepka, L. Q., Santos, D., Flores, E. M. M., Vizzotto, B. S., Wolf, K., Ourique, A. F., Mortari, S. R., Rhoden, C. R. B., & Krause, L. M. F. (2023). Phytochemical characterization and toxicological activity attributed to the acetonic extract of South American Vassobia breviflora. J. Toxicol. Environ. Health, Part A, 86(21), 816–832. doi: 10.1080/15287394.2023.2254316. DOI: https://doi.org/10.1080/15287394.2023.2254316

Viana, A. R., Noro, B. G., Santos, D., Wolf, K., Das Neves, Y. D., Moresco, R. N., Ourique, A. F., Flores, E. M. M., Rhoden, C. R. B., Krause, L.

M. F., & Vizzotto, B. S. (2022). Detection of new phytochemical compounds from Vassobia breviflora (Sendtn.) Hunz: antioxidant, cytotoxic, and antibacterial activity of the hexane extract. J. Toxicol. Environ. Health, Part A, 86(2–3), 51–68. doi:10.1080/15287394.2022.2156956. DOI: https://doi.org/10.1080/15287394.2022.2156956

Xu, L., Liu, H., Ma, Y., Wu, C., Li, R., & Chao, Z. (2019). Comparative study of volatile components from male and female flower buds of Populus × tomentosa by HS-SPME-GC-MS. Nat. Prod. Res., 333(14), 2105–2108. doi: 10.1080/14786419.2018.1483929. DOI: https://doi.org/10.1080/14786419.2018.1483929

Yu, X. D., Pickett, J., Ma, Y. Z., Bruce, T., Napier, J., Jones, H. D., & Xia, L. Q. (2012). Metabolic engineering of plant-derived (e)-β-farnesene synthase genes for a novel type of aphid-resistant genetically modified crop plants. J. Integr. Plant Biol., 54(5), 282–299. doi: 10.1111/j.1744-7909.2012.01107.x. DOI: https://doi.org/10.1111/j.1744-7909.2012.01107.x

Zhang, S. X., Chai, X. S., & Jiang, R. (2017). Accurate determination of residual acrylic acid in superabsorbent polymer of hygiene products by headspace gas chromatography. J. Chromatogr. A, 1485, 20–23. doi: 10.1016/j.chroma.2017.01.023. DOI: https://doi.org/10.1016/j.chroma.2017.01.023

Zhang, X., & Dwivedi, C. (2011). Skin cancer chemoprevention by α-santalol. Front. Biosci. (Schol. Ed.), 3, 777–787. doi: 10.2741/s186. DOI: https://doi.org/10.2741/s186

Downloads

Published

2024-12-06

How to Cite

Colauto, N. B., Oliveira, H. L. M. de, Inumaro, R. S., Almeida, F. C. de, Ferreira, E. de S., Souza, C. O. de, Gonçalves, J. E., Lima, D. de, Linde, G. A., & Gazim, Z. C. (2024). Volatile compound changes at Brunfelsia uniflora flower senescence. Ciência E Natura, 46, e83735. https://doi.org/10.5902/2179460X83735

Most read articles by the same author(s)