Prospecção e screening antibacteriano de extratos metabólicos de fungos endofíticos isolados de Tibouchina granulosa (Desr.) Cogn. (Melastomataceae)
DOI:
https://doi.org/10.5902/2179460X74647Palavras-chave:
Moléculas bioativas, Endófitos, HPLC, Patógenos humanos, MICResumo
A multirresistência de microrganismos patogênicos contra antimicrobianos amplamente utilizados tem se fortalecido nos últimos anos; dentre as diferentes fontes de compostos bioativos, os fungos endofíticos se destacam por sua capacidade de produzir importantes classes de substâncias bioativas. O presente estudo investigou os perfis cromatográficos e a atividade antimicrobiana contra 10 cepas patogênicas (4 incluídas em prioridade crítica pela OMS) dos extratos de 12 fungos endofíticos isolados de Tibouchina granulosa (Melastomataceae). A atividade dos metabólitos foi avaliada usando microdiluição em caldo para determinar a MIC e MBC. A triagem de perfis químicos parciais foi obtida usando HPLC-DAD. Extratos de todos os fungos podem inibir a proliferação de 4 a 10 cepas bacterianas patogênicas testadas. Em concentrações entre 500 e 1.000 µg mL-1, o extrato de Xylaria berteroi inibiu o crescimento de todas as cepas testadas e Diaporthe oxe inibiu oito cepas. A análise química demonstrou diversos perfis cromatográficos com a possibilidade de diferentes classes de metabólitos especializados, incluindo policetídeos, alcalóides, furanonas e terpenóides. No geral, fungos endofíticos isolados de Tibouchina granulosa sintetizam diferentes compostos bioativos naturais, indicando sua promessa para prospecção e caracterização química.
Downloads
Referências
Agrawal, S., Samanta, S., & Deshmukh, S. K. (2022). The antidiabetic potential of endophytic fungi: Future prospects as therapeutic agents. Biotechnology and Applied Biochemistry, 69(3), 1159-1165. DOI: https://doi.org/10.1002/bab.2192
Ayres, M. C., Brandão, M. S., Vieira-Júnior, G. M., Menor, J. C. A., Silva, H. B., Soares, M. J. S., & Chaves, M. H. (2008). Atividade antibacteriana de plantas úteis e constituintes químicos da raiz de Copernicia prunifera. Revista Brasileira de farmacognosia, 18, 90-97. DOI: https://doi.org/10.1590/S0102-695X2008000100017
Baas, W. J., & Niemann, G. J. (1978). High performance liquid chromatography of terpenoids. Journal of High Resolution Chromatography, 1(1), 18-20. DOI: https://doi.org/10.1002/jhrc.1240010105
Bekiesch, P., Oberhofer, M., Sykora, C., Urban, E., & Zotchev, S. B. (2021). Piperazic acid containing peptides produced by an endophytic Streptomyces sp. isolated from the medicinal plant Atropa belladonna. Natural Product Research, 35(7), 1090-1096. DOI: https://doi.org/10.1080/14786419.2019.1639174
Bodede, O., Kuali, M., Prinsloo, G., Moodley, R., & Govinden, R. (2022). Anti-Pseudomonas aeruginosa activity of a C16-terpene dilactone isolated from the endophytic fungus Neofusicoccum luteum of Kigelia africana (Lam.). Scientific Reports, 12(1), 780. DOI: https://doi.org/10.1038/s41598-021-04747-x
Bomfim, E. M. S., Coelho, A. A. O. P., Silva, M. C., Marques, E. J., & Vale, V. L. C. (2021). Phytochemical composition and biological activities of extracts from ten species of the family Melastomataceae Juss. Brazilian Journal of Biology, 82, e242112. DOI: https://doi.org/10.1590/1519-6984.242112
Brilhante, R. S. N., Caetano, É. P., Lima, R. A. C. D., Marques, F. J. D. F., Castelo-Branco, D. D. S. C. M., Melo, C. V. S. D., ... & Sidrim, J. J. C (2016). Terpinen-4-ol, tyrosol, and β-lapachone as potential antifungals against dimorphic fungi. brazilian journal of microbiology, 47(4), 917-924. DOI: https://doi.org/10.1016/j.bjm.2016.07.015
Calado, M. D. L., Silva, J., Alves, C., Susano, P., Santos, D., Alves, J., ... & Campos, M. J. (2021). Marine endophytic fungi associated with
Halopteris scoparia (Linnaeus) Sauvageau as producers of bioactive secondary metabolites with potential dermocosmetic application. PLoS One, 16(5), e0250954. DOI: https://doi.org/10.1371/journal.pone.0250954
Chaichanan, J., Wiyakrutta, S., Pongtharangkul, T., Isarangkul, D., & Meevootisom, V. (2014). Optimization of zofimarin production by an endophytic fungus, Xylaria sp. Acra L38. Brazilian Journal of Microbiology, 45, 287-293.. DOI: https://doi.org/10.1590/S1517-83822014000100042
Chen, X. W., Yang, Z. D., Li, X. F., Sun, J. H., Yang, L. J., & Zhang, X. G. (2019). Colletotrichine B, a new sesquiterpenoid from Colletotrichum gloeosporioides GT-7, a fungal endophyte of Uncaria rhynchophylla. Natural product research, 33(1), 108-112. DOI: https://doi.org/10.1080/14786419.2018.1437437
Chinworrungsee, M., Kittakoop, P., Isaka, M., Rungrod, A., Tanticharoen, M., & Thebtaranonth, Y. (2001). Antimalarial halorosellinic acid from the marine fungus Halorosellinia oceanica. Bioorganic & medicinal chemistry letters, 11(15), 1965-1969. DOI: https://doi.org/10.1016/S0960-894X(01)00327-4
CLSI - Clinical & Laboratory Standards Institute. (2018). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 11th ed. CLSI standard M07. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.
Cui, H., Lin, Y., Luo, M., Lu, Y., Huang, X., & She, Z. (2017a). Diaporisoindoles A–C: Three isoprenylisoindole alkaloid derivatives from the mangrove endophytic fungus Diaporthe sp. SYSU-HQ3. Organic letters, 19(20), 5621-5624. DOI: https://doi.org/10.1021/acs.orglett.7b02748
Cui, H., Yu, J., Chen, S., Ding, M., Huang, X., Yuan, J., & She, Z. (2017b). Alkaloids from the mangrove endophytic fungus Diaporthe phaseolorum SKS019. Bioorganic & Medicinal Chemistry Letters, 27(4), 803-807. DOI: https://doi.org/10.1016/j.bmcl.2017.01.029
De Oliveira Chagas, M. B., Dos Santos, I. P., da Silva, L. C. N., dos Santos Correia, M. T., de Araújo, J. M., da Silva Cavalcanti, M., & de Menezes Lima, V. L. (2017). Antimicrobial activity of cultivable endophytic fungi associated with Hancornia speciosa gomes bark. The Open Microbiology Journal, 11, 179. DOI: https://doi.org/10.2174/1874285801711010179
Demeni, P. C. E., Betote, P. H. D., Kom, C. W., Tchamgoue, E. N., Ndedi Moni, E. D. F., Foumane Maniepi, J. S., ... & Nyegue, M. A. (2021). Endophytic fungi from Alstonia boonei De Wild and Greenwayodendron suaveolens (Engl. and Diels) Verdc. subsp. suaveolens possess inhibitory activity against pneumonia causing bacteria. Evidence‐Based Complementary and Alternative Medicine, 2021(1), 9966323. DOI: https://doi.org/10.1155/2021/9966323
Devadas, S. M., Nayak, U. Y., Narayan, R., Hande, M. H., & Ballal, M. (2019). 2, 5-Dimethyl-4-hydroxy-3 (2H)-furanone as an Anti-biofilm Agent Against Non-Candida a lbicans Candida Species. Mycopathologia, 184, 403-411. DOI: https://doi.org/10.1007/s11046-019-00341-y
Dias, Ê. R., Dias, T. D. L. M. F., Alexandre-Moreira, M. S., & Branco, A. (2016). Antinociceptive activity of Tibouchina pereirae, an endemic plant from the Brazilian semiarid region. Zeitschrift für Naturforschung C, 71(7-8), 261-265. DOI: https://doi.org/10.1515/znc-2015-0155
Domzalski, A., Margent, L., Vigo, V., Dewan, F., Pilarsetty, N. V. K., Xu, Y., & Kawamura, A. (2021). Unambiguous Stereochemical Assignment of Cyclo (Phe-Pro), Cyclo (Leu-Pro), and Cyclo (Val-Pro) by Electronic Circular Dichroic Spectroscopy. Molecules, 26(19), 5981. DOI: https://doi.org/10.3390/molecules26195981
Dos Santos, G. D., Gomes, R. R., Gonçalves, R., Fornari, G., Maia, B. H., Schmidt-Dannert, C., ... & Vicente, V. A. (2021). Molecular identification and antimicrobial activity of foliar endophytic fungi on the brazilian pepper tree (Schinus terebinthifolius) reveal new species of Diaporthe. Current Microbiology, 78(8), 3218-3229. DOI: https://doi.org/10.1007/s00284-021-02582-x
Du, W., Yao, Z., Li, J., Sun, C., Xia, J., Wang, B., ... & Ren, L. (2020). Diversity and antimicrobial activity of endophytic fungi isolated from Securinega suffruticosa in the Yellow River Delta. PloS one, 15(3), e0229589. DOI: https://doi.org/10.1371/journal.pone.0229589
El‐Hawary, S. S., Mohammed, R., Bahr, H. S., Attia, E. Z., El‐Katatny, M. M. H., Abelyan, N., ... & Abdelmohsen, U. R. (2021). Soybean‐associated endophytic fungi as potential source for anti‐COVID‐19 metabolites supported by docking analysis. Journal of Applied Microbiology, 131(3), 1193-1211. DOI: https://doi.org/10.1111/jam.15031
El‐Sayed, E. R. (2021). Discovery of the anticancer drug vinblastine from the endophytic Alternaria alternata and yield improvement by gamma irradiation mutagenesis. Journal of Applied Microbiology, 131(6), 2886-2898. DOI: https://doi.org/10.1111/jam.15169
El-Sayed, E. S. R., Hazaa, M. A., Shebl, M. M., Amer, M. M., Mahmoud, S. R., & Khattab, A. A. (2022). Bioprospecting endophytic fungi for bioactive metabolites and use of irradiation to improve their bioactivities. AMB Express, 12(1), 46. DOI: https://doi.org/10.1186/s13568-022-01386-x
Felisbino, J. K., Vieira, B. S., de Oliveira, A., da Silva, N. A., Martins, C. H., Santiago, M. B., ... & Sousa, R. M. (2021). Identification of Substances Produced by Cercospora brachiata in Absence of Light and Evaluation of Antibacterial Activity. Journal of Fungi, 7(9), 680. DOI: https://doi.org/10.3390/jof7090680
Feng, Y., Ren, F., Niu, S., Wang, L., Li, L., Liu, X., & Che, Y. (2014). Guanacastane diterpenoids from the plant endophytic fungus Cercospora sp. Journal of Natural Products, 77(4), 873-881. DOI: https://doi.org/10.1021/np4009688
Golias, H. C., Polonio, J. C., dos Santos Ribeiro, M. A., Polli, A. D., da Silva, A. A., Bulla, A. M., ... & Pamphile, J. A. (2020). Tibouchina granulosa (Vell.) Cogn (Melastomataceae) as source of endophytic fungi: isolation, identification, and antiprotozoal activity of metabolites from Phyllosticta capitalensis. Brazilian Journal of Microbiology, 51, 557-569. DOI: https://doi.org/10.1007/s42770-019-00221-z
Gond, S. K., Mishra, A., Sharma, V. K., Verma, S. K., Kumar, J., Kharwar, R. N., & Kumar, A. (2012). Diversity and antimicrobial activity of endophytic fungi isolated from Nyctanthes arbor-tristis, a well-known medicinal plant of India. Mycoscience, 53(2), 113-121. DOI: https://doi.org/10.1007/S10267-011-0146-Z
Hardoim, P. R., Van Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S., Campisano, A., ... & Sessitsch, A. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and molecular biology reviews, 79(3), 293-320. DOI: https://doi.org/10.1128/MMBR.00050-14
Harman, G. E., Doni, F., Khadka, R. B., & Uphoff, N. (2021). Endophytic strains of Trichoderma increase plants’ photosynthetic capability. Journal of applied microbiology, 130(2), 529-546. DOI: https://doi.org/10.1111/jam.14368
Hu, Z., Wang, J., Bi, X., Zhang, J., Xue, Y., Yang, Y., ... & Zhang, Y. (2014). Colletotrichumine A, a novel indole–pyrazine alkaloid with an unprecedented C16N3-type skeleton from cultures of Colletotrichum capsici. Tetrahedron Letters, 55(44), 6093-6095. DOI: https://doi.org/10.1016/j.tetlet.2014.09.041
Junior, J. G. S., da Silva Tavares, C. G., do Monte, T. V. S., do Nascimento, W. M., de Oliveira, J. R. S., & Callou, M. A. M. (2018). Automedicação com antibióticos e suas consequências Fisiopatológicas: uma revisão. Revista Rios Saúde, 1(1), 7-17.
Kamel, R. A., Abdel-Razek, A. S., Hamed, A., Ibrahim, R. R., Stammler, H. G., Frese, M., ... & Shaaban, M. (2020). Isoshamixanthone: a new pyrano xanthone from endophytic Aspergillus sp. ASCLA and absolute configuration of epiisoshamixanthone. Natural product research, 34(8), 1080-1090. DOI: https://doi.org/10.1080/14786419.2018.1548458
Khan, M. S., Gao, J., Munir, I., Zhang, M., Liu, Y., Moe, T. S., ... & Zhang, X. (2021). Characterization of Endophytic Fungi, Acremonium sp., from Lilium davidii and Analysis of Its Antifungal and Plant Growth‐Promoting Effects. BioMed Research International, 2021(1), 9930210. DOI: https://doi.org/10.1155/2021/9930210
Kim, T. Y., Jang, J. Y., Yu, N. H., Chi, W. J., Bae, C. H., Yeo, J. H., ... & Kim, J. C. (2018). Nematicidal activity of grammicin produced by Xylaria grammica KCTC 13121BP against Meloidogyne incognita. Pest management science, 74(2), 384-391. DOI: https://doi.org/10.1002/ps.4717
Kim, Y. J., Duraisamy, K., Jeong, M. H., Park, S. Y., Kim, S., Lee, Y., ... & Kim, J. C. (2021). Nematicidal activity of grammicin biosynthesis pathway intermediates in Xylaria grammica KCTC 13121BP against Meloidogyne incognita. Molecules, 26(15), 4675. DOI: https://doi.org/10.3390/molecules26154675
Kuster, R. M., Arnold, N., & Wessjohann, L. (2009). Anti-fungal flavonoids from Tibouchina grandifolia. Biochemical Systematics and Ecology, 37(1), 63-65. DOI: https://doi.org/10.1016/j.bse.2009.01.005
Lai, D., Mao, Z., Zhou, Z., Zhao, S., Xue, M., Dai, J., ... & Li, D. (2020). New chlamydosporol derivatives from the endophytic fungus Pleosporales sp. Sigrf05 and their cytotoxic and antimicrobial activities. Scientific Reports, 10(1), 8193. DOI: https://doi.org/10.1038/s41598-020-65148-0
Lee, J., Yi, J. M., Kim, H., Lee, Y. J., Park, J. S., Bang, O. S., & Kim, N. S. (2014). Cytochalasin H, an active anti-angiogenic constituent of the ethanol extract of Gleditsia sinensis thorns. Biological and Pharmaceutical Bulletin, 37(1), 6-12. DOI: https://doi.org/10.1248/bpb.b13-00318
Li, Y., Lu, C., Huang, Y., Li, Y., & Shen, Y. (2012). Cytochalasin H2, a new cytochalasin, isolated from the endophytic fungus Xylaria sp. A23. Rec Nat Prod, 6(2), 121-126.
Li, J., Chen, C., Fang, T., Wu, L., Liu, W., Tang, J., & Long, Y. (2022). New steroid and isocoumarin from the mangrove endophytic fungus Talaromyces sp. SCNU-F0041. Molecules, 27(18), 5766. DOI: https://doi.org/10.3390/molecules27185766
Lim, S. M., Agatonovic-Kustrin, S., Lim, F. T., & Ramasamy, K. (2021). High-performance thin layer chromatography-based phytochemical and bioactivity characterisation of anticancer endophytic fungal extracts derived from marine plants. Journal of pharmaceutical and biomedical analysis, 193, 113702. DOI: https://doi.org/10.1016/j.jpba.2020.113702
Liu, H., Liu, S., Guo, L., Zhang, Y., Cui, L., & Ding, G. (2012). New furanones from the plant endophytic fungus Pestalotiopsis besseyi. Molecules, 17(12), 14015-14021. DOI: https://doi.org/10.3390/molecules171214015
Zhou, J., Liu, Z., Wang, S., Li, J., Li, Y., Chen, W. K., & Wang, R. (2020). Fungal endophytes promote the accumulation of Amaryllidaceae alkaloids in Lycoris radiata. Environmental microbiology, 22(4), 1421-1434. DOI: https://doi.org/10.1111/1462-2920.14958
Lu, H., Zou, W. X., Meng, J. C., Hu, J., & Tan, R. X. (2000). New bioactive metabolites produced by Colletotrichum sp., an endophytic DOI: https://doi.org/10.1016/S0168-9452(99)00199-5
fungus in Artemisia annua. Plant science, 151(1), 67-73.
Lu, X., Li, Y., Qin, H., Tang, C., Zhang, Y., Tang, X., ... & Feng, B. (2020). Quinones from endophytic fungus Fusarium sp. HJT-P-5 of Rhodiola angusta Nakai. Phytochemistry Letters, 39, 162-167. DOI: https://doi.org/10.1016/j.phytol.2020.08.008
Luo, Y. P., Zheng, C. J., Chen, G. Y., Song, X. P., & Wang, Z. (2019). Three new polyketides from a mangrove-derived fungus Colletotrichum gloeosporioides. The Journal of antibiotics, 72(7), 513-517. DOI: https://doi.org/10.1038/s41429-019-0178-8
Ma, J. T., Du, J. X., Zhang, Y., Liu, J. K., Feng, T., & He, J. (2022). Natural imidazole alkaloids as antibacterial agents against Pseudomonas syringae pv. actinidiae isolated from kiwi endophytic fungus Fusarium tricinctum. Fitoterapia, 156, 105070. DOI: https://doi.org/10.1016/j.fitote.2021.105070
Maehara, S., Simanjuntak, P., Kitamura, C., Ohashi, K., & Shibuya, H. (2012). Bioproduction of Cinchona alkaloids by the endophytic fungus Diaporthe sp. associated with Cinchona ledgeriana. Chemical and Pharmaceutical Bulletin, 60(10), 1301-1304. DOI: https://doi.org/10.1248/cpb.c12-00545
Markus, V., Golberg, K., Teralı, K., Ozer, N., Kramarsky-Winter, E., Marks, R. S., & Kushmaro, A. (2021). Assessing the molecular targets and mode of action of furanone C-30 on Pseudomonas aeruginosa quorum sensing. Molecules, 26(6), 1620. DOI: https://doi.org/10.3390/molecules26061620
Matias, R. R., Sepúlveda, A. M. G., Batista, B. N., de Lucena, J. M. V. M., & Albuquerque, P. M. (2021). Degradation of Staphylococcus aureus biofilm using hydrolytic enzymes produced by Amazonian endophytic fungi. Applied biochemistry and biotechnology, 193, 2145-2161. DOI: https://doi.org/10.1007/s12010-021-03542-8
Medina, R. P., Araujo, A. R., Batista Jr, J. M., Cardoso, C. L., Seidl, C., Vilela, A. F., ... & Silva, D. H. (2019). Botryane terpenoids produced by Nemania bipapillata, an endophytic fungus isolated from red alga Asparagopsis taxiformis-Falkenbergia stage. Scientific reports, 9(1), 12318. DOI: https://doi.org/10.1038/s41598-019-48655-7
Mookherjee, A., Mitra, M., Kutty, N. N., Mitra, A., & Maiti, M. K. (2020). Characterization of endo-metabolome exhibiting antimicrobial and antioxidant activities from endophytic fungus Cercospora sp. PM018. South African journal of botany, 134, 264-272. DOI: https://doi.org/10.1016/j.sajb.2020.01.040
Moraga, J., Gomes, W., Pinedo, C., Cantoral, J. M., Hanson, J. R., Carbú, M., ... & Collado, I. G. (2019). The current status on secondary metabolites produced by plant pathogenic Colletotrichum species. Phytochemistry Reviews, 18, 215-239. DOI: https://doi.org/10.1007/s11101-018-9590-0
Nicoletti, R., & Fiorentino, A. (2015). Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture, 5(4), 918-970. DOI: https://doi.org/10.3390/agriculture5040918
Padmathilake, K. G. E., Bandara, H. M. S. K. H., Qader, M. M., Kumar, N. S., Jayasinghe, L., Masubuti, H., & Fujimoto, Y. (2017). Talarofuranone, a new talaroconvolutin analog from the endophytic fungus Talaromyces purpurogenus from Pouteria campechiana seeds. Natural Product Communications, 12(4), 1934578X1701200406. DOI: https://doi.org/10.1177/1934578X1701200406
Palupi, K. D., Ilyas, M., & Agusta, A. (2021). Endophytic fungi inhabiting Physalis angulata L. plant: diversity, antioxidant, and antibacterial activities of their ethyl acetate extracts. Journal of Basic and Clinical Physiology and Pharmacology, 32(4), 823-829. DOI: https://doi.org/10.1515/jbcpp-2020-0479
Pelo, S., Mavumengwana, V., & Green, E. (2020). Diversity and antimicrobial activity of culturable fungal endophytes in Solanum mauritianum. International Journal of Environmental Research and Public Health, 17(2), 439. DOI: https://doi.org/10.3390/ijerph17020439
Phoulivong, S., Cai, L., Chen, H., McKenzie, E. H., Abdelsalam, K., Chukeatirote, E., & Hyde, K. D. (2010). Colletotrichum gloeosporioides is not a common pathogen on tropical fruits. Fungal Diversity, 44, 33-43. DOI: https://doi.org/10.1007/s13225-010-0046-0
Pongcharoen, W., Rukachaisirikul, V., Isaka, M., & Sriklung, K. (2007). Cytotoxic metabolites from the wood-decayed fungus Xylaria sp. BCC 9653. Chemical and pharmaceutical Bulletin, 55(11), 1647-1648. DOI: https://doi.org/10.1248/cpb.55.1647
Rai, N., Kumari Keshri, P., Verma, A., Kamble, S. C., Mishra, P., Barik, S., ... & Gautam, V. (2021). Plant associated fungal endophytes as a source of natural bioactive compounds. Mycology, 12(3), 139-159. DOI: https://doi.org/10.1080/21501203.2020.1870579
Radiastuti, N., Mutea, D., & Sumarlin, L. O. (2017, February). Endophytic Colletrotrichum spp. from Cinchona calisaya wedd. and it’s potential quinine production as antibacterial and antimalaria. In AIP Conference Proceedings (Vol. 1813, No. 1). AIP Publishing. DOI: https://doi.org/10.1063/1.4975960
Rajani, P., Rajasekaran, C., Vasanthakumari, M. M., Olsson, S. B., Ravikanth, G., & Shaanker, R. U. (2021). Inhibition of plant pathogenic fungi by endophytic Trichoderma spp. through mycoparasitism and volatile organic compounds. Microbiological Research, 242, 126595. DOI: https://doi.org/10.1016/j.micres.2020.126595
Rakshith, D., Santosh, P., Tarman, K., Gurudatt, D. M., & Satish, S. (2013). Dereplication strategy for antimicrobial metabolite using thin-layer chromatography-bioautography and LC-PDA-MS analysis. JPC–Journal of Planar Chromatography–Modern TLC, 26, 470-474. DOI: https://doi.org/10.1556/JPC.26.2013.6.2
Ramírez-Atehortúa, A. M., Morales-Agudelo, L., Osorio, E., & Lara-Guzmán, O. J. (2018). The traditional medicinal plants Cuphea calophylla, Tibouchina kingii, and Pseudelephantopus spiralis attenuate inflammatory and oxidative mediators. Evidence‐Based Complementary and Alternative Medicine, 2018(1), 1953726. DOI: https://doi.org/10.1155/2018/1953726
Reginato, M., & Michelangeli, F. A. (2016). Untangling the phylogeny of Leandra s. str.(Melastomataceae, Miconieae). Molecular phylogenetics and evolution, 96, 17-32. DOI: https://doi.org/10.1016/j.ympev.2015.11.015
Rodríguez-López, P., Barrenengoa, A. E., Pascual-Sáez, S., & Cabo, M. L. (2019). Efficacy of synthetic furanones on Listeria monocytogenes biofilm formation. Foods, 8(12), 647. DOI: https://doi.org/10.3390/foods8120647
Rukachaisirikul, V., Buadam, S., Sukpondma, Y., Phongpaichit, S., Sakayaroj, J., & Hutadilok-Towatana, N. (2013). Indanone and mellein derivatives from the Garcinia-derived fungus Xylaria sp. PSU-G12. Phytochemistry Letters, 6(1), 135-138. DOI: https://doi.org/10.1016/j.phytol.2012.11.007
Saikia, B., Gogoi, S., Savani, A. K., & Bhattacharyya, A. (2022). Metabolites and peptides of endophytic origin in plant growth promotion and defense reactions in Solanaceous crop tomato. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 89-110). Elsevier. DOI: https://doi.org/10.1016/B978-0-323-85579-2.00005-8
Sangster, A. W., & Stuart, K. L. (1965). Ultraviolet spectra of alkaloids. Chemical reviews, 65(1), 69-130. DOI: https://doi.org/10.1021/cr60233a003
SCOPUS. Published September 18, 2021. [ONLINE] https://www.scopus.com/. [Accessed 26 September 2021].
Shivaprakash, M. R., Appannanavar, S. B., Dhaliwal, M., Gupta, A., Gupta, S., Gupta, A., & Chakrabarti, A. (2011). Colletotrichum truncatum: an unusual pathogen causing mycotic keratitis and endophthalmitis. Journal of Clinical Microbiology, 49(8), 2894-2898. DOI: https://doi.org/10.1128/JCM.00151-11
Siewers, V., Viaud, M., Jimenez-Teja, D., Collado, I. G., Gronover, C. S., Pradier, J. M., ... & Tudzynski, P. (2005). Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor. Molecular plant-microbe interactions, 18(6), 602-612. DOI: https://doi.org/10.1094/MPMI-18-0602
Sishuba, A., Leboko, J., Ateba, C. N., & Manganyi, M. C. (2021). First Report: Diversity of Endophytic fungi Possessing Antifungal Activity Isolated from Native Kougoed (Sceletium tortuosum L.). Mycobiology, 49(1), 89-94. DOI: https://doi.org/10.1080/12298093.2020.1857009
Song, F., Wu, S. H., Zhai, Y. Z., Xuan, Q. C., & Wang, T. (2014). Secondary metabolites from the genus Xylaria and their bioactivities. Chemistry & Biodiversity, 11(5), 673-694. DOI: https://doi.org/10.1002/cbdv.201200286
Sritharan, T., Savitri Kumar, N., Jayasinghe, L., Araya, H., & Fujimoto, Y. (2019). Isocoumarins and dihydroisocoumarins from the endophytic fungus Biscogniauxia capnodes isolated from the fruits of Averrhoa carambola. Natural Product Communications, 14(5), 1934578X19851969. DOI: https://doi.org/10.1177/1934578X19851969
Su, J. C., Pan, Q., Xu, X., Wei, X., Lei, X., & Zhang, P. (2022). Structurally diverse steroids from an endophyte of Aspergillus tennesseensis 1022LEF attenuates LPS-induced inflammatory response through the cholinergic anti-inflammatory pathway. Chemico-Biological Interactions, 362, 109998. DOI: https://doi.org/10.1016/j.cbi.2022.109998
Świderska-Burek, U., Daub, M. E., Thomas, E., Jaszek, M., Pawlik, A., & Janusz, G. (2020). Phytopathogenic cercosporoid fungi—from taxonomy to modern biochemistry and molecular biology. International Journal of Molecular Sciences, 21(22), 8555. DOI: https://doi.org/10.3390/ijms21228555
Talukdar, R., Wary, S., Mili, C., Roy, S., & Tayung, K. (2020). Antimicrobial secondary metabolites obtained from endophytic fungi inhabiting healthy leaf tissues of Houttuynia cordata Thunb., an ethnomedicinal plant of Northeast India. Journal of Applied Pharmaceutical Science, 10(9), 099-106.
Tracanna, M. I., Fortuna, A. M., Contreras Cardenas, A. V., Marr, A. K., McMaster, W. R., Gómez‐Velasco, A., ... & Bach, H. (2015). Anti leishmanial, anti‐inflammatory and antimicrobial activities of phenolic derivatives from Tibouchina paratropica. Phytotherapy Research, 29(3), 393-397. DOI: https://doi.org/10.1002/ptr.5263
Trendowski, M., Zoino, J. N., Christen, T. D., Acquafondata, C., & Fondy, T. P. (2015). Preparation, in vivo administration, dose-limiting toxicities, and antineoplastic activity of cytochalasin B. Translational Oncology, 8(4), 308-317. DOI: https://doi.org/10.1016/j.tranon.2015.06.003
UNEP. (2019). UN Environment Programme. Megadiverse Brazil: giving biodiversity an online boost. Megadiverse Brazil: giving biodiversity an online boost. [ONLINE] Available at https://www.unep.org/news-and-stories/story/megadiverse-brazil-giving biodiversity-online-boost.
Wang, Y. F., Wang, X. Y., Lai, G. F., Lu, C. H., & Luo, S. D. (2007). Three new sesquiterpenoids from the aerial parts of Homalomena occulta. Chemistry & Biodiversity, 4(5), 925-931. DOI: https://doi.org/10.1002/cbdv.200790081
Wang, C. Y., Hao, J. D., Ning, X. Y., Wu, J. S., Zhao, D. L., Kong, C. J., ... & Wang, C. Y. (2018). Penicilazaphilones D and E: two new azaphilones from a sponge-derived strain of the fungus Penicillium sclerotiorum. RSC advances, 8(8), 4348-4353. DOI: https://doi.org/10.1039/C7RA13327H
Wang, Q. Y., Chen, H. P., & Liu, J. K. (2021). Isopimarane diterpenes from the rice fermentation of the fungicolous fungus Xylaria longipes HFG1018. Phytochemistry Letters, 45, 100-104. DOI: https://doi.org/10.1016/j.phytol.2021.08.005
Wang, J. F., Huang, R., Song, Z. Q., Yang, Q. R., Li, X. P., Liu, S. S., & Wu, S. H. (2022). Polyhydroxylated sesquiterpenes and ergostane glycosides produced by the endophytic fungus Xylaria sp. from Azadirachta indica. Phytochemistry, 199, 113188. DOI: https://doi.org/10.1016/j.phytochem.2022.113188
Weltmeier, F., Mäser, A., Menze, A., Hennig, S., Schad, M., Breuer, F., ... & Stahl, D. J. (2011). Transcript profiles in sugar beet genotypes uncover timing and strength of defense reactions to Cercospora beticola infection. Molecular plant-microbe interactions, 24(7), 758-772. DOI: https://doi.org/10.1094/MPMI-08-10-0189
Wijeratne, E. K., Xu, Y., Arnold, A. E., & Gunatilaka, A. L. (2015). Pulvinulin A, graminin C, and cis-gregatin B–new natural furanones from Pulvinula sp. 11120, a fungal endophyte of Cupressus arizonica. Natural product communications, 10(1), 1934578X1501000127. DOI: https://doi.org/10.1177/1934578X1501000127
WORLD HEALTH ORGANIZATION. (2017). WHO publishes list of bacteria for which new antibiotics are urgently needed. [ONLINE] Available at https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed.
WORLD HEALTH ORGANIZATION. (2020). Lack of new antibiotics threatens global efforts to contain drug-resistant infections. [ONLINE]
Available at https://www.who.int/news/item/17-01-2020-lack-of-new-antibiotics-threatens-global-efforts-to-contain-drug-resistant infections.
WORLD HEALTH ORGANIZATION. (2021). 2020 antibacterial agents in clinical and preclinical development: an overview and analysis [ONLINE] Available at https://apps.who.int/iris/handle/10665/340694.
Wu, Y. Y., Zhang, T. Y., Zhang, M. Y., Cheng, J., & Zhang, Y. X. (2018). An endophytic Fungi of Ginkgo biloba L. produces antimicrobial metabolites as potential inhibitors of FtsZ of Staphylococcus aureus. Fitoterapia, 128, 265-271. DOI: https://doi.org/10.1016/j.fitote.2018.05.033
Wu, Z., Chen, J., Zhang, X., Chen, Z., Li, T., She, Z., ... & Li, C. (2019). Four new isocoumarins and a new natural tryptamine with antifungal activities from a mangrove endophytic fungus Botryosphaeria ramosa L29. Marine Drugs, 17(2), 88. DOI: https://doi.org/10.3390/md17020088
Xiao, Z; Chen, S., Cai, R., Hong, K., & She, Z. New furoisocoumarins and isocoumarins from the mangrove endophytic fungus Aspergillus sp. 085242. Beilstein Journal of Organic Chemistry, 12(1), 2077-2085. DOI: https://doi.org/10.3762/bjoc.12.196
Xu, Z., Xiong, B., & Xu, J. (2021). Chemical investigation of secondary metabolites produced by mangrove endophytic fungus Phyllosticta capitalensis. Natural product research, 35(9), 1561-1565. DOI: https://doi.org/10.1080/14786419.2019.1656624
Yang, Z. J., Yang, T., Luo, M. Y., Xia, X., Chen, D. J., & Qian, X. P. (2013). A new sesquiterpenoid from fungus Colletotrichum sp. and its cytotoxicity. Yao xue xue bao= Acta Pharmaceutica Sinica, 48(6), 891-895.
Youssef, F. S., Alshammari, E., & Ashour, M. L. (2021). Bioactive alkaloids from genus Aspergillus: Mechanistic interpretation of their antimicrobial and potential SARS-CoV-2 inhibitory activity using molecular modelling. International journal of molecular sciences, 22(4), 1866. DOI: https://doi.org/10.3390/ijms22041866
Zang, L. Y., Wei, W., Wang, T., Guo, Y., Tan, R. X., & Ge, H. M. (2012). Isochromophilones from an endophytic fungus Diaporthe sp. Natural products and bioprospecting, 2, 117-120. DOI: https://doi.org/10.1007/s13659-012-0023-2
Zhu, X., Liu, Y., Hu, Y., Lv, X., Shi, Z., Yu, Y., ... & Xu, J. (2021). Neuroprotective activities of constituents from Phyllosticta capitalensis, an endophyte fungus of Loropetalum chinense var. rubrum. Chemistry & Biodiversity, 18(8), e2100314. DOI: https://doi.org/10.1002/cbdv.202100314
Zou, W. X., Meng, J. C., Lu, H., Chen, G. X., Shi, G. X., Zhang, T. Y., & Tan, R. X. (2000). Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. Journal of natural products, 63(11), 1529-1530. DOI: https://doi.org/10.1021/np000204t
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Ciência e Natura

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Para acessar a DECLARAÇÃO DE ORIGINALIDADE E EXCLUSIVIDADE E CESSÃO DE DIREITOS AUTORAIS clique aqui.
Diretrizes Éticas para Publicação de Revistas
A revista Ciência e Natura está empenhada em garantir a ética na publicação e na qualidade dos artigos.
A conformidade com padrões de comportamento ético é, portanto, esperada de todas as partes envolvidas: Autores, Editores e Revisores.
Em particular,
Autores: Os Autores devem apresentar uma discussão objetiva sobre a importância do trabalho de pesquisa, bem como detalhes e referências suficientes para permitir que outros reproduzam as experiências. Declarações fraudulentas ou intencionalmente incorretas constituem comportamento antiético e são inaceitáveis. Artigos de Revisão também devem ser objetivos, abrangentes e relatos precisos do estado da arte. Os Autores devem assegurar que seu trabalho é uma obra totalmente original, e se o trabalho e / ou palavras de outros têm sido utilizadas, isso tem sido devidamente reconhecido. O plágio em todas as suas formas constitui um comportamento publicitário não ético e é inaceitável. Submeter o mesmo manuscrito a mais de um jornal simultaneamente constitui um comportamento publicitário não ético e é inaceitável. Os Autores não devem submeter artigos que descrevam essencialmente a mesma pesquisa a mais de uma revista. O Autor correspondente deve garantir que haja um consenso total de todos os Co-autores na aprovação da versão final do artigo e sua submissão para publicação.
Editores: Os Editores devem avaliar manuscritos exclusivamente com base no seu mérito acadêmico. Um Editor não deve usar informações não publicadas na própria pesquisa do Editor sem o consentimento expresso por escrito do Autor. Os Editores devem tomar medidas de resposta razoável quando tiverem sido apresentadas queixas éticas relativas a um manuscrito submetido ou publicado.
Revisores: Todos os manuscritos recebidos para revisão devem ser tratados como documentos confidenciais. As informações ou ideias privilegiadas obtidas através da análise por pares devem ser mantidas confidenciais e não utilizadas para vantagens pessoais. As revisões devem ser conduzidas objetivamente e as observações devem ser formuladas claramente com argumentos de apoio, de modo que os Autores possam usá-los para melhorar o artigo. Qualquer Revisor selecionado que se sinta desqualificado para rever a pesquisa relatada em um manuscrito ou sabe que sua rápida revisão será impossível deve notificar o Editor e desculpar-se do processo de revisão. Os Revisores não devem considerar manuscritos nos quais tenham conflitos de interesse resultantes de relacionamentos ou conexões competitivas, colaborativas ou outras conexões com qualquer dos autores, empresas ou instituições conectadas aos documentos.

