Prospection and antibacterial screening of metabolic extracts of endophytic fungi isolated from Tibouchina granulosa (Desr.) Cogn. (Melastomataceae)

Authors

DOI:

https://doi.org/10.5902/2179460X74647

Keywords:

Bioactive molecules, Endophytes, HPLC, Human's pathogens, MIC

Abstract

The multidrug resistance of pathogenic microorganisms against widely used antimicrobials has grown in recent years. Among the different sources of bioactive compounds, endophytic fungi stand out for their ability to produce important classes of bioactive substances. The present study investigated the chromatographic profiles and antimicrobial activity against 10 pathogenic strains (four included in critical priority by WHO) of the extracts of 12 endophytic fungi isolated from Tibouchina granulosa (Melastomataceae). The activity of the metabolites was evaluated using broth microdilution to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Screening of partial chemical profiles was obtained using HPLC-DAD. Extracts of all fungi inhibited the proliferation of 4–10 pathogenic bacterial strains tested. At concentrations between 500 and 1,000 µg mL-1, Xylaria berteroi extract inhibited the growth of all strains tested, while Diaporthe oxe inhibited eight strains. Chemical analysis demonstrated diverse chromatographic profiles with the possibility of different classes of specialized metabolites, including polyketides, alkaloids, furanones, and terpenoids. Overall, endophytic fungi isolated from Tibouchina granulosa were found to synthesize different natural bioactive compounds, highlighting their potential for use in chemical prospecting and characterization.

Downloads

Author Biographies

Thomas Kehrwald Fruet, Universidade Estadual de Maringá

Postgraduate in Conservation and Management of Natural Resources from UNIOESTE.

Julio Cesar Polonio, Universidade Estadual de Maringá

PhD in Environmental Biotechnology from the State University of Maringá.

Halison Correia Golias, Universidade Tecnológica Federal do Paraná

PhD in Comparative Biology from the State University of Maringá.

Anderson Valdiney Gomes Ramos, Universidade Estadual de Maringá

PhD in Chemistry from the State University of Maringá.

Nathália da Silva Malaco, Universidade Estadual de Maringá

Degree in Chemistry from the State University of Maringá.

Debora Cristina Baldoqui, Universidade Estadual de Maringá

PhD in Chemistry from the Institute of Chemistry of Araraquara-UNESP.

João Alencar Pamphile, Universidade Estadual de Maringá

PhD in Genetics and Plant Breeding from Escola Superior de Agricultura Luiz de Queiroz.

Veronica Elisa Pimenta Vicentini, Universidade Estadual de Maringá

PhD in Genetics from the Faculty of Medicine of Ribeirão Preto.

References

Agrawal, S., Samanta, S., & Deshmukh, S. K. (2022). The antidiabetic potential of endophytic fungi: Future prospects as therapeutic agents. Biotechnology and Applied Biochemistry, 69(3), 1159-1165. DOI: https://doi.org/10.1002/bab.2192

Ayres, M. C., Brandão, M. S., Vieira-Júnior, G. M., Menor, J. C. A., Silva, H. B., Soares, M. J. S., & Chaves, M. H. (2008). Atividade antibacteriana de plantas úteis e constituintes químicos da raiz de Copernicia prunifera. Revista Brasileira de farmacognosia, 18, 90-97. DOI: https://doi.org/10.1590/S0102-695X2008000100017

Baas, W. J., & Niemann, G. J. (1978). High performance liquid chromatography of terpenoids. Journal of High Resolution Chromatography, 1(1), 18-20. DOI: https://doi.org/10.1002/jhrc.1240010105

Bekiesch, P., Oberhofer, M., Sykora, C., Urban, E., & Zotchev, S. B. (2021). Piperazic acid containing peptides produced by an endophytic Streptomyces sp. isolated from the medicinal plant Atropa belladonna. Natural Product Research, 35(7), 1090-1096. DOI: https://doi.org/10.1080/14786419.2019.1639174

Bodede, O., Kuali, M., Prinsloo, G., Moodley, R., & Govinden, R. (2022). Anti-Pseudomonas aeruginosa activity of a C16-terpene dilactone isolated from the endophytic fungus Neofusicoccum luteum of Kigelia africana (Lam.). Scientific Reports, 12(1), 780. DOI: https://doi.org/10.1038/s41598-021-04747-x

Bomfim, E. M. S., Coelho, A. A. O. P., Silva, M. C., Marques, E. J., & Vale, V. L. C. (2021). Phytochemical composition and biological activities of extracts from ten species of the family Melastomataceae Juss. Brazilian Journal of Biology, 82, e242112. DOI: https://doi.org/10.1590/1519-6984.242112

Brilhante, R. S. N., Caetano, É. P., Lima, R. A. C. D., Marques, F. J. D. F., Castelo-Branco, D. D. S. C. M., Melo, C. V. S. D., ... & Sidrim, J. J. C (2016). Terpinen-4-ol, tyrosol, and β-lapachone as potential antifungals against dimorphic fungi. brazilian journal of microbiology, 47(4), 917-924. DOI: https://doi.org/10.1016/j.bjm.2016.07.015

Calado, M. D. L., Silva, J., Alves, C., Susano, P., Santos, D., Alves, J., ... & Campos, M. J. (2021). Marine endophytic fungi associated with

Halopteris scoparia (Linnaeus) Sauvageau as producers of bioactive secondary metabolites with potential dermocosmetic application. PLoS One, 16(5), e0250954. DOI: https://doi.org/10.1371/journal.pone.0250954

Chaichanan, J., Wiyakrutta, S., Pongtharangkul, T., Isarangkul, D., & Meevootisom, V. (2014). Optimization of zofimarin production by an endophytic fungus, Xylaria sp. Acra L38. Brazilian Journal of Microbiology, 45, 287-293.. DOI: https://doi.org/10.1590/S1517-83822014000100042

Chen, X. W., Yang, Z. D., Li, X. F., Sun, J. H., Yang, L. J., & Zhang, X. G. (2019). Colletotrichine B, a new sesquiterpenoid from Colletotrichum gloeosporioides GT-7, a fungal endophyte of Uncaria rhynchophylla. Natural product research, 33(1), 108-112. DOI: https://doi.org/10.1080/14786419.2018.1437437

Chinworrungsee, M., Kittakoop, P., Isaka, M., Rungrod, A., Tanticharoen, M., & Thebtaranonth, Y. (2001). Antimalarial halorosellinic acid from the marine fungus Halorosellinia oceanica. Bioorganic & medicinal chemistry letters, 11(15), 1965-1969. DOI: https://doi.org/10.1016/S0960-894X(01)00327-4

CLSI - Clinical & Laboratory Standards Institute. (2018). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 11th ed. CLSI standard M07. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.

Cui, H., Lin, Y., Luo, M., Lu, Y., Huang, X., & She, Z. (2017a). Diaporisoindoles A–C: Three isoprenylisoindole alkaloid derivatives from the mangrove endophytic fungus Diaporthe sp. SYSU-HQ3. Organic letters, 19(20), 5621-5624. DOI: https://doi.org/10.1021/acs.orglett.7b02748

Cui, H., Yu, J., Chen, S., Ding, M., Huang, X., Yuan, J., & She, Z. (2017b). Alkaloids from the mangrove endophytic fungus Diaporthe phaseolorum SKS019. Bioorganic & Medicinal Chemistry Letters, 27(4), 803-807. DOI: https://doi.org/10.1016/j.bmcl.2017.01.029

De Oliveira Chagas, M. B., Dos Santos, I. P., da Silva, L. C. N., dos Santos Correia, M. T., de Araújo, J. M., da Silva Cavalcanti, M., & de Menezes Lima, V. L. (2017). Antimicrobial activity of cultivable endophytic fungi associated with Hancornia speciosa gomes bark. The Open Microbiology Journal, 11, 179. DOI: https://doi.org/10.2174/1874285801711010179

Demeni, P. C. E., Betote, P. H. D., Kom, C. W., Tchamgoue, E. N., Ndedi Moni, E. D. F., Foumane Maniepi, J. S., ... & Nyegue, M. A. (2021). Endophytic fungi from Alstonia boonei De Wild and Greenwayodendron suaveolens (Engl. and Diels) Verdc. subsp. suaveolens possess inhibitory activity against pneumonia causing bacteria. Evidence‐Based Complementary and Alternative Medicine, 2021(1), 9966323. DOI: https://doi.org/10.1155/2021/9966323

Devadas, S. M., Nayak, U. Y., Narayan, R., Hande, M. H., & Ballal, M. (2019). 2, 5-Dimethyl-4-hydroxy-3 (2H)-furanone as an Anti-biofilm Agent Against Non-Candida a lbicans Candida Species. Mycopathologia, 184, 403-411. DOI: https://doi.org/10.1007/s11046-019-00341-y

Dias, Ê. R., Dias, T. D. L. M. F., Alexandre-Moreira, M. S., & Branco, A. (2016). Antinociceptive activity of Tibouchina pereirae, an endemic plant from the Brazilian semiarid region. Zeitschrift für Naturforschung C, 71(7-8), 261-265. DOI: https://doi.org/10.1515/znc-2015-0155

Domzalski, A., Margent, L., Vigo, V., Dewan, F., Pilarsetty, N. V. K., Xu, Y., & Kawamura, A. (2021). Unambiguous Stereochemical Assignment of Cyclo (Phe-Pro), Cyclo (Leu-Pro), and Cyclo (Val-Pro) by Electronic Circular Dichroic Spectroscopy. Molecules, 26(19), 5981. DOI: https://doi.org/10.3390/molecules26195981

Dos Santos, G. D., Gomes, R. R., Gonçalves, R., Fornari, G., Maia, B. H., Schmidt-Dannert, C., ... & Vicente, V. A. (2021). Molecular identification and antimicrobial activity of foliar endophytic fungi on the brazilian pepper tree (Schinus terebinthifolius) reveal new species of Diaporthe. Current Microbiology, 78(8), 3218-3229. DOI: https://doi.org/10.1007/s00284-021-02582-x

Du, W., Yao, Z., Li, J., Sun, C., Xia, J., Wang, B., ... & Ren, L. (2020). Diversity and antimicrobial activity of endophytic fungi isolated from Securinega suffruticosa in the Yellow River Delta. PloS one, 15(3), e0229589. DOI: https://doi.org/10.1371/journal.pone.0229589

El‐Hawary, S. S., Mohammed, R., Bahr, H. S., Attia, E. Z., El‐Katatny, M. M. H., Abelyan, N., ... & Abdelmohsen, U. R. (2021). Soybean‐associated endophytic fungi as potential source for anti‐COVID‐19 metabolites supported by docking analysis. Journal of Applied Microbiology, 131(3), 1193-1211. DOI: https://doi.org/10.1111/jam.15031

El‐Sayed, E. R. (2021). Discovery of the anticancer drug vinblastine from the endophytic Alternaria alternata and yield improvement by gamma irradiation mutagenesis. Journal of Applied Microbiology, 131(6), 2886-2898. DOI: https://doi.org/10.1111/jam.15169

El-Sayed, E. S. R., Hazaa, M. A., Shebl, M. M., Amer, M. M., Mahmoud, S. R., & Khattab, A. A. (2022). Bioprospecting endophytic fungi for bioactive metabolites and use of irradiation to improve their bioactivities. AMB Express, 12(1), 46. DOI: https://doi.org/10.1186/s13568-022-01386-x

Felisbino, J. K., Vieira, B. S., de Oliveira, A., da Silva, N. A., Martins, C. H., Santiago, M. B., ... & Sousa, R. M. (2021). Identification of Substances Produced by Cercospora brachiata in Absence of Light and Evaluation of Antibacterial Activity. Journal of Fungi, 7(9), 680. DOI: https://doi.org/10.3390/jof7090680

Feng, Y., Ren, F., Niu, S., Wang, L., Li, L., Liu, X., & Che, Y. (2014). Guanacastane diterpenoids from the plant endophytic fungus Cercospora sp. Journal of Natural Products, 77(4), 873-881. DOI: https://doi.org/10.1021/np4009688

Golias, H. C., Polonio, J. C., dos Santos Ribeiro, M. A., Polli, A. D., da Silva, A. A., Bulla, A. M., ... & Pamphile, J. A. (2020). Tibouchina granulosa (Vell.) Cogn (Melastomataceae) as source of endophytic fungi: isolation, identification, and antiprotozoal activity of metabolites from Phyllosticta capitalensis. Brazilian Journal of Microbiology, 51, 557-569. DOI: https://doi.org/10.1007/s42770-019-00221-z

Gond, S. K., Mishra, A., Sharma, V. K., Verma, S. K., Kumar, J., Kharwar, R. N., & Kumar, A. (2012). Diversity and antimicrobial activity of endophytic fungi isolated from Nyctanthes arbor-tristis, a well-known medicinal plant of India. Mycoscience, 53(2), 113-121. DOI: https://doi.org/10.1007/S10267-011-0146-Z

Hardoim, P. R., Van Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S., Campisano, A., ... & Sessitsch, A. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and molecular biology reviews, 79(3), 293-320. DOI: https://doi.org/10.1128/MMBR.00050-14

Harman, G. E., Doni, F., Khadka, R. B., & Uphoff, N. (2021). Endophytic strains of Trichoderma increase plants’ photosynthetic capability. Journal of applied microbiology, 130(2), 529-546. DOI: https://doi.org/10.1111/jam.14368

Hu, Z., Wang, J., Bi, X., Zhang, J., Xue, Y., Yang, Y., ... & Zhang, Y. (2014). Colletotrichumine A, a novel indole–pyrazine alkaloid with an unprecedented C16N3-type skeleton from cultures of Colletotrichum capsici. Tetrahedron Letters, 55(44), 6093-6095. DOI: https://doi.org/10.1016/j.tetlet.2014.09.041

Junior, J. G. S., da Silva Tavares, C. G., do Monte, T. V. S., do Nascimento, W. M., de Oliveira, J. R. S., & Callou, M. A. M. (2018). Automedicação com antibióticos e suas consequências Fisiopatológicas: uma revisão. Revista Rios Saúde, 1(1), 7-17.

Kamel, R. A., Abdel-Razek, A. S., Hamed, A., Ibrahim, R. R., Stammler, H. G., Frese, M., ... & Shaaban, M. (2020). Isoshamixanthone: a new pyrano xanthone from endophytic Aspergillus sp. ASCLA and absolute configuration of epiisoshamixanthone. Natural product research, 34(8), 1080-1090. DOI: https://doi.org/10.1080/14786419.2018.1548458

Khan, M. S., Gao, J., Munir, I., Zhang, M., Liu, Y., Moe, T. S., ... & Zhang, X. (2021). Characterization of Endophytic Fungi, Acremonium sp., from Lilium davidii and Analysis of Its Antifungal and Plant Growth‐Promoting Effects. BioMed Research International, 2021(1), 9930210. DOI: https://doi.org/10.1155/2021/9930210

Kim, T. Y., Jang, J. Y., Yu, N. H., Chi, W. J., Bae, C. H., Yeo, J. H., ... & Kim, J. C. (2018). Nematicidal activity of grammicin produced by Xylaria grammica KCTC 13121BP against Meloidogyne incognita. Pest management science, 74(2), 384-391. DOI: https://doi.org/10.1002/ps.4717

Kim, Y. J., Duraisamy, K., Jeong, M. H., Park, S. Y., Kim, S., Lee, Y., ... & Kim, J. C. (2021). Nematicidal activity of grammicin biosynthesis pathway intermediates in Xylaria grammica KCTC 13121BP against Meloidogyne incognita. Molecules, 26(15), 4675. DOI: https://doi.org/10.3390/molecules26154675

Kuster, R. M., Arnold, N., & Wessjohann, L. (2009). Anti-fungal flavonoids from Tibouchina grandifolia. Biochemical Systematics and Ecology, 37(1), 63-65. DOI: https://doi.org/10.1016/j.bse.2009.01.005

Lai, D., Mao, Z., Zhou, Z., Zhao, S., Xue, M., Dai, J., ... & Li, D. (2020). New chlamydosporol derivatives from the endophytic fungus Pleosporales sp. Sigrf05 and their cytotoxic and antimicrobial activities. Scientific Reports, 10(1), 8193. DOI: https://doi.org/10.1038/s41598-020-65148-0

Lee, J., Yi, J. M., Kim, H., Lee, Y. J., Park, J. S., Bang, O. S., & Kim, N. S. (2014). Cytochalasin H, an active anti-angiogenic constituent of the ethanol extract of Gleditsia sinensis thorns. Biological and Pharmaceutical Bulletin, 37(1), 6-12. DOI: https://doi.org/10.1248/bpb.b13-00318

Li, Y., Lu, C., Huang, Y., Li, Y., & Shen, Y. (2012). Cytochalasin H2, a new cytochalasin, isolated from the endophytic fungus Xylaria sp. A23. Rec Nat Prod, 6(2), 121-126.

Li, J., Chen, C., Fang, T., Wu, L., Liu, W., Tang, J., & Long, Y. (2022). New steroid and isocoumarin from the mangrove endophytic fungus Talaromyces sp. SCNU-F0041. Molecules, 27(18), 5766. DOI: https://doi.org/10.3390/molecules27185766

Lim, S. M., Agatonovic-Kustrin, S., Lim, F. T., & Ramasamy, K. (2021). High-performance thin layer chromatography-based phytochemical and bioactivity characterisation of anticancer endophytic fungal extracts derived from marine plants. Journal of pharmaceutical and biomedical analysis, 193, 113702. DOI: https://doi.org/10.1016/j.jpba.2020.113702

Liu, H., Liu, S., Guo, L., Zhang, Y., Cui, L., & Ding, G. (2012). New furanones from the plant endophytic fungus Pestalotiopsis besseyi. Molecules, 17(12), 14015-14021. DOI: https://doi.org/10.3390/molecules171214015

Zhou, J., Liu, Z., Wang, S., Li, J., Li, Y., Chen, W. K., & Wang, R. (2020). Fungal endophytes promote the accumulation of Amaryllidaceae alkaloids in Lycoris radiata. Environmental microbiology, 22(4), 1421-1434. DOI: https://doi.org/10.1111/1462-2920.14958

Lu, H., Zou, W. X., Meng, J. C., Hu, J., & Tan, R. X. (2000). New bioactive metabolites produced by Colletotrichum sp., an endophytic DOI: https://doi.org/10.1016/S0168-9452(99)00199-5

fungus in Artemisia annua. Plant science, 151(1), 67-73.

Lu, X., Li, Y., Qin, H., Tang, C., Zhang, Y., Tang, X., ... & Feng, B. (2020). Quinones from endophytic fungus Fusarium sp. HJT-P-5 of Rhodiola angusta Nakai. Phytochemistry Letters, 39, 162-167. DOI: https://doi.org/10.1016/j.phytol.2020.08.008

Luo, Y. P., Zheng, C. J., Chen, G. Y., Song, X. P., & Wang, Z. (2019). Three new polyketides from a mangrove-derived fungus Colletotrichum gloeosporioides. The Journal of antibiotics, 72(7), 513-517. DOI: https://doi.org/10.1038/s41429-019-0178-8

Ma, J. T., Du, J. X., Zhang, Y., Liu, J. K., Feng, T., & He, J. (2022). Natural imidazole alkaloids as antibacterial agents against Pseudomonas syringae pv. actinidiae isolated from kiwi endophytic fungus Fusarium tricinctum. Fitoterapia, 156, 105070. DOI: https://doi.org/10.1016/j.fitote.2021.105070

Maehara, S., Simanjuntak, P., Kitamura, C., Ohashi, K., & Shibuya, H. (2012). Bioproduction of Cinchona alkaloids by the endophytic fungus Diaporthe sp. associated with Cinchona ledgeriana. Chemical and Pharmaceutical Bulletin, 60(10), 1301-1304. DOI: https://doi.org/10.1248/cpb.c12-00545

Markus, V., Golberg, K., Teralı, K., Ozer, N., Kramarsky-Winter, E., Marks, R. S., & Kushmaro, A. (2021). Assessing the molecular targets and mode of action of furanone C-30 on Pseudomonas aeruginosa quorum sensing. Molecules, 26(6), 1620. DOI: https://doi.org/10.3390/molecules26061620

Matias, R. R., Sepúlveda, A. M. G., Batista, B. N., de Lucena, J. M. V. M., & Albuquerque, P. M. (2021). Degradation of Staphylococcus aureus biofilm using hydrolytic enzymes produced by Amazonian endophytic fungi. Applied biochemistry and biotechnology, 193, 2145-2161. DOI: https://doi.org/10.1007/s12010-021-03542-8

Medina, R. P., Araujo, A. R., Batista Jr, J. M., Cardoso, C. L., Seidl, C., Vilela, A. F., ... & Silva, D. H. (2019). Botryane terpenoids produced by Nemania bipapillata, an endophytic fungus isolated from red alga Asparagopsis taxiformis-Falkenbergia stage. Scientific reports, 9(1), 12318. DOI: https://doi.org/10.1038/s41598-019-48655-7

Mookherjee, A., Mitra, M., Kutty, N. N., Mitra, A., & Maiti, M. K. (2020). Characterization of endo-metabolome exhibiting antimicrobial and antioxidant activities from endophytic fungus Cercospora sp. PM018. South African journal of botany, 134, 264-272. DOI: https://doi.org/10.1016/j.sajb.2020.01.040

Moraga, J., Gomes, W., Pinedo, C., Cantoral, J. M., Hanson, J. R., Carbú, M., ... & Collado, I. G. (2019). The current status on secondary metabolites produced by plant pathogenic Colletotrichum species. Phytochemistry Reviews, 18, 215-239. DOI: https://doi.org/10.1007/s11101-018-9590-0

Nicoletti, R., & Fiorentino, A. (2015). Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture, 5(4), 918-970. DOI: https://doi.org/10.3390/agriculture5040918

Padmathilake, K. G. E., Bandara, H. M. S. K. H., Qader, M. M., Kumar, N. S., Jayasinghe, L., Masubuti, H., & Fujimoto, Y. (2017). Talarofuranone, a new talaroconvolutin analog from the endophytic fungus Talaromyces purpurogenus from Pouteria campechiana seeds. Natural Product Communications, 12(4), 1934578X1701200406. DOI: https://doi.org/10.1177/1934578X1701200406

Palupi, K. D., Ilyas, M., & Agusta, A. (2021). Endophytic fungi inhabiting Physalis angulata L. plant: diversity, antioxidant, and antibacterial activities of their ethyl acetate extracts. Journal of Basic and Clinical Physiology and Pharmacology, 32(4), 823-829. DOI: https://doi.org/10.1515/jbcpp-2020-0479

Pelo, S., Mavumengwana, V., & Green, E. (2020). Diversity and antimicrobial activity of culturable fungal endophytes in Solanum mauritianum. International Journal of Environmental Research and Public Health, 17(2), 439. DOI: https://doi.org/10.3390/ijerph17020439

Phoulivong, S., Cai, L., Chen, H., McKenzie, E. H., Abdelsalam, K., Chukeatirote, E., & Hyde, K. D. (2010). Colletotrichum gloeosporioides is not a common pathogen on tropical fruits. Fungal Diversity, 44, 33-43. DOI: https://doi.org/10.1007/s13225-010-0046-0

Pongcharoen, W., Rukachaisirikul, V., Isaka, M., & Sriklung, K. (2007). Cytotoxic metabolites from the wood-decayed fungus Xylaria sp. BCC 9653. Chemical and pharmaceutical Bulletin, 55(11), 1647-1648. DOI: https://doi.org/10.1248/cpb.55.1647

Rai, N., Kumari Keshri, P., Verma, A., Kamble, S. C., Mishra, P., Barik, S., ... & Gautam, V. (2021). Plant associated fungal endophytes as a source of natural bioactive compounds. Mycology, 12(3), 139-159. DOI: https://doi.org/10.1080/21501203.2020.1870579

Radiastuti, N., Mutea, D., & Sumarlin, L. O. (2017, February). Endophytic Colletrotrichum spp. from Cinchona calisaya wedd. and it’s potential quinine production as antibacterial and antimalaria. In AIP Conference Proceedings (Vol. 1813, No. 1). AIP Publishing. DOI: https://doi.org/10.1063/1.4975960

Rajani, P., Rajasekaran, C., Vasanthakumari, M. M., Olsson, S. B., Ravikanth, G., & Shaanker, R. U. (2021). Inhibition of plant pathogenic fungi by endophytic Trichoderma spp. through mycoparasitism and volatile organic compounds. Microbiological Research, 242, 126595. DOI: https://doi.org/10.1016/j.micres.2020.126595

Rakshith, D., Santosh, P., Tarman, K., Gurudatt, D. M., & Satish, S. (2013). Dereplication strategy for antimicrobial metabolite using thin-layer chromatography-bioautography and LC-PDA-MS analysis. JPC–Journal of Planar Chromatography–Modern TLC, 26, 470-474. DOI: https://doi.org/10.1556/JPC.26.2013.6.2

Ramírez-Atehortúa, A. M., Morales-Agudelo, L., Osorio, E., & Lara-Guzmán, O. J. (2018). The traditional medicinal plants Cuphea calophylla, Tibouchina kingii, and Pseudelephantopus spiralis attenuate inflammatory and oxidative mediators. Evidence‐Based Complementary and Alternative Medicine, 2018(1), 1953726. DOI: https://doi.org/10.1155/2018/1953726

Reginato, M., & Michelangeli, F. A. (2016). Untangling the phylogeny of Leandra s. str.(Melastomataceae, Miconieae). Molecular phylogenetics and evolution, 96, 17-32. DOI: https://doi.org/10.1016/j.ympev.2015.11.015

Rodríguez-López, P., Barrenengoa, A. E., Pascual-Sáez, S., & Cabo, M. L. (2019). Efficacy of synthetic furanones on Listeria monocytogenes biofilm formation. Foods, 8(12), 647. DOI: https://doi.org/10.3390/foods8120647

Rukachaisirikul, V., Buadam, S., Sukpondma, Y., Phongpaichit, S., Sakayaroj, J., & Hutadilok-Towatana, N. (2013). Indanone and mellein derivatives from the Garcinia-derived fungus Xylaria sp. PSU-G12. Phytochemistry Letters, 6(1), 135-138. DOI: https://doi.org/10.1016/j.phytol.2012.11.007

Saikia, B., Gogoi, S., Savani, A. K., & Bhattacharyya, A. (2022). Metabolites and peptides of endophytic origin in plant growth promotion and defense reactions in Solanaceous crop tomato. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 89-110). Elsevier. DOI: https://doi.org/10.1016/B978-0-323-85579-2.00005-8

Sangster, A. W., & Stuart, K. L. (1965). Ultraviolet spectra of alkaloids. Chemical reviews, 65(1), 69-130. DOI: https://doi.org/10.1021/cr60233a003

SCOPUS. Published September 18, 2021. [ONLINE] https://www.scopus.com/. [Accessed 26 September 2021].

Shivaprakash, M. R., Appannanavar, S. B., Dhaliwal, M., Gupta, A., Gupta, S., Gupta, A., & Chakrabarti, A. (2011). Colletotrichum truncatum: an unusual pathogen causing mycotic keratitis and endophthalmitis. Journal of Clinical Microbiology, 49(8), 2894-2898. DOI: https://doi.org/10.1128/JCM.00151-11

Siewers, V., Viaud, M., Jimenez-Teja, D., Collado, I. G., Gronover, C. S., Pradier, J. M., ... & Tudzynski, P. (2005). Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor. Molecular plant-microbe interactions, 18(6), 602-612. DOI: https://doi.org/10.1094/MPMI-18-0602

Sishuba, A., Leboko, J., Ateba, C. N., & Manganyi, M. C. (2021). First Report: Diversity of Endophytic fungi Possessing Antifungal Activity Isolated from Native Kougoed (Sceletium tortuosum L.). Mycobiology, 49(1), 89-94. DOI: https://doi.org/10.1080/12298093.2020.1857009

Song, F., Wu, S. H., Zhai, Y. Z., Xuan, Q. C., & Wang, T. (2014). Secondary metabolites from the genus Xylaria and their bioactivities. Chemistry & Biodiversity, 11(5), 673-694. DOI: https://doi.org/10.1002/cbdv.201200286

Sritharan, T., Savitri Kumar, N., Jayasinghe, L., Araya, H., & Fujimoto, Y. (2019). Isocoumarins and dihydroisocoumarins from the endophytic fungus Biscogniauxia capnodes isolated from the fruits of Averrhoa carambola. Natural Product Communications, 14(5), 1934578X19851969. DOI: https://doi.org/10.1177/1934578X19851969

Su, J. C., Pan, Q., Xu, X., Wei, X., Lei, X., & Zhang, P. (2022). Structurally diverse steroids from an endophyte of Aspergillus tennesseensis 1022LEF attenuates LPS-induced inflammatory response through the cholinergic anti-inflammatory pathway. Chemico-Biological Interactions, 362, 109998. DOI: https://doi.org/10.1016/j.cbi.2022.109998

Świderska-Burek, U., Daub, M. E., Thomas, E., Jaszek, M., Pawlik, A., & Janusz, G. (2020). Phytopathogenic cercosporoid fungi—from taxonomy to modern biochemistry and molecular biology. International Journal of Molecular Sciences, 21(22), 8555. DOI: https://doi.org/10.3390/ijms21228555

Talukdar, R., Wary, S., Mili, C., Roy, S., & Tayung, K. (2020). Antimicrobial secondary metabolites obtained from endophytic fungi inhabiting healthy leaf tissues of Houttuynia cordata Thunb., an ethnomedicinal plant of Northeast India. Journal of Applied Pharmaceutical Science, 10(9), 099-106.

Tracanna, M. I., Fortuna, A. M., Contreras Cardenas, A. V., Marr, A. K., McMaster, W. R., Gómez‐Velasco, A., ... & Bach, H. (2015). Anti leishmanial, anti‐inflammatory and antimicrobial activities of phenolic derivatives from Tibouchina paratropica. Phytotherapy Research, 29(3), 393-397. DOI: https://doi.org/10.1002/ptr.5263

Trendowski, M., Zoino, J. N., Christen, T. D., Acquafondata, C., & Fondy, T. P. (2015). Preparation, in vivo administration, dose-limiting toxicities, and antineoplastic activity of cytochalasin B. Translational Oncology, 8(4), 308-317. DOI: https://doi.org/10.1016/j.tranon.2015.06.003

UNEP. (2019). UN Environment Programme. Megadiverse Brazil: giving biodiversity an online boost. Megadiverse Brazil: giving biodiversity an online boost. [ONLINE] Available at https://www.unep.org/news-and-stories/story/megadiverse-brazil-giving biodiversity-online-boost.

Wang, Y. F., Wang, X. Y., Lai, G. F., Lu, C. H., & Luo, S. D. (2007). Three new sesquiterpenoids from the aerial parts of Homalomena occulta. Chemistry & Biodiversity, 4(5), 925-931. DOI: https://doi.org/10.1002/cbdv.200790081

Wang, C. Y., Hao, J. D., Ning, X. Y., Wu, J. S., Zhao, D. L., Kong, C. J., ... & Wang, C. Y. (2018). Penicilazaphilones D and E: two new azaphilones from a sponge-derived strain of the fungus Penicillium sclerotiorum. RSC advances, 8(8), 4348-4353. DOI: https://doi.org/10.1039/C7RA13327H

Wang, Q. Y., Chen, H. P., & Liu, J. K. (2021). Isopimarane diterpenes from the rice fermentation of the fungicolous fungus Xylaria longipes HFG1018. Phytochemistry Letters, 45, 100-104. DOI: https://doi.org/10.1016/j.phytol.2021.08.005

Wang, J. F., Huang, R., Song, Z. Q., Yang, Q. R., Li, X. P., Liu, S. S., & Wu, S. H. (2022). Polyhydroxylated sesquiterpenes and ergostane glycosides produced by the endophytic fungus Xylaria sp. from Azadirachta indica. Phytochemistry, 199, 113188. DOI: https://doi.org/10.1016/j.phytochem.2022.113188

Weltmeier, F., Mäser, A., Menze, A., Hennig, S., Schad, M., Breuer, F., ... & Stahl, D. J. (2011). Transcript profiles in sugar beet genotypes uncover timing and strength of defense reactions to Cercospora beticola infection. Molecular plant-microbe interactions, 24(7), 758-772. DOI: https://doi.org/10.1094/MPMI-08-10-0189

Wijeratne, E. K., Xu, Y., Arnold, A. E., & Gunatilaka, A. L. (2015). Pulvinulin A, graminin C, and cis-gregatin B–new natural furanones from Pulvinula sp. 11120, a fungal endophyte of Cupressus arizonica. Natural product communications, 10(1), 1934578X1501000127. DOI: https://doi.org/10.1177/1934578X1501000127

WORLD HEALTH ORGANIZATION. (2017). WHO publishes list of bacteria for which new antibiotics are urgently needed. [ONLINE] Available at https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed.

WORLD HEALTH ORGANIZATION. (2020). Lack of new antibiotics threatens global efforts to contain drug-resistant infections. [ONLINE]

Available at https://www.who.int/news/item/17-01-2020-lack-of-new-antibiotics-threatens-global-efforts-to-contain-drug-resistant infections.

WORLD HEALTH ORGANIZATION. (2021). 2020 antibacterial agents in clinical and preclinical development: an overview and analysis [ONLINE] Available at https://apps.who.int/iris/handle/10665/340694.

Wu, Y. Y., Zhang, T. Y., Zhang, M. Y., Cheng, J., & Zhang, Y. X. (2018). An endophytic Fungi of Ginkgo biloba L. produces antimicrobial metabolites as potential inhibitors of FtsZ of Staphylococcus aureus. Fitoterapia, 128, 265-271. DOI: https://doi.org/10.1016/j.fitote.2018.05.033

Wu, Z., Chen, J., Zhang, X., Chen, Z., Li, T., She, Z., ... & Li, C. (2019). Four new isocoumarins and a new natural tryptamine with antifungal activities from a mangrove endophytic fungus Botryosphaeria ramosa L29. Marine Drugs, 17(2), 88. DOI: https://doi.org/10.3390/md17020088

Xiao, Z; Chen, S., Cai, R., Hong, K., & She, Z. New furoisocoumarins and isocoumarins from the mangrove endophytic fungus Aspergillus sp. 085242. Beilstein Journal of Organic Chemistry, 12(1), 2077-2085. DOI: https://doi.org/10.3762/bjoc.12.196

Xu, Z., Xiong, B., & Xu, J. (2021). Chemical investigation of secondary metabolites produced by mangrove endophytic fungus Phyllosticta capitalensis. Natural product research, 35(9), 1561-1565. DOI: https://doi.org/10.1080/14786419.2019.1656624

Yang, Z. J., Yang, T., Luo, M. Y., Xia, X., Chen, D. J., & Qian, X. P. (2013). A new sesquiterpenoid from fungus Colletotrichum sp. and its cytotoxicity. Yao xue xue bao= Acta Pharmaceutica Sinica, 48(6), 891-895.

Youssef, F. S., Alshammari, E., & Ashour, M. L. (2021). Bioactive alkaloids from genus Aspergillus: Mechanistic interpretation of their antimicrobial and potential SARS-CoV-2 inhibitory activity using molecular modelling. International journal of molecular sciences, 22(4), 1866. DOI: https://doi.org/10.3390/ijms22041866

Zang, L. Y., Wei, W., Wang, T., Guo, Y., Tan, R. X., & Ge, H. M. (2012). Isochromophilones from an endophytic fungus Diaporthe sp. Natural products and bioprospecting, 2, 117-120. DOI: https://doi.org/10.1007/s13659-012-0023-2

Zhu, X., Liu, Y., Hu, Y., Lv, X., Shi, Z., Yu, Y., ... & Xu, J. (2021). Neuroprotective activities of constituents from Phyllosticta capitalensis, an endophyte fungus of Loropetalum chinense var. rubrum. Chemistry & Biodiversity, 18(8), e2100314. DOI: https://doi.org/10.1002/cbdv.202100314

Zou, W. X., Meng, J. C., Lu, H., Chen, G. X., Shi, G. X., Zhang, T. Y., & Tan, R. X. (2000). Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. Journal of natural products, 63(11), 1529-1530. DOI: https://doi.org/10.1021/np000204t

Downloads

Published

2024-11-22

How to Cite

Fruet, T. K., Polonio, J. C., Golias, H. C., Ramos, A. V. G., Malaco, N. da S., Baldoqui, D. C., Pamphile, J. A., & Vicentini, V. E. P. (2024). Prospection and antibacterial screening of metabolic extracts of endophytic fungi isolated from Tibouchina granulosa (Desr.) Cogn. (Melastomataceae). Ciência E Natura, 46, e74647. https://doi.org/10.5902/2179460X74647

Most read articles by the same author(s)