O consumo de ora-pro-nóbis e tamarillo melhora quais indicadores de saúde?

Autores

DOI:

https://doi.org/10.5902/2179460X87814

Palavras-chave:

Pereskia aculeata, Solanum betaceum, Plantas alimentícias não convencionais, Dietetics, Clinical practice

Resumo

Ora-pro-nóbis e tamarillo são plantas alimentícias não convencionais (PANC) no Brasil ricas em nutrientes e fibras, que podem exercer efeitos positivos à saúde. O objetivo foi analisar estudos para verificar a eficácia e aplicabilidade dessas PANC na prática clínica. O protocolo Prisma foi utilizado para busca de dados. Foram pesquisadas quatro bases de dados (Pubmed, Cochrane, Embase e Web of Science), utilizando termos compilados, e operadores booleanos “AND”/“OR”. Rayann foi utilizado para selecionar os estudos. O manual de Joanna Briggs foi adotado para avaliar o risco de viés dos estudos. Assim, 17 estudos foram incluídos nesta revisão. A maioria dos estudos (14/17) apresentou baixo risco de viés, 2 moderado e 1 alto. Concluindo, ora-pro-nóbis e tamarillo exercem efeitos benéficos no perfil lipídico. Tamarillo melhora a capacidade antioxidante, além de exercer efeitos positivos no perfil lipídico, glicêmico, na memória e na ação anticarcinogênica, enquanto a ora-pro-nóbis atuou na modulação gastrointestinal, no perfil lipídico, na redução do peso corporal, no aumento da saciedade e na melhora da artrite reumatoide. Para melhorar os indicadores de saúde, sugerimos o consumo diário de 100 g de folhas frescas ou 10 g de farinha de ora-pro-nóbis; e/ou a partir de 100 g de tamarillo.

Downloads

Não há dados estatísticos.

Biografia do Autor

Renata de Souza Ferreira, Universidade Federal de Viçosa

Mestrado em Ciência da Nutrição pela Universidade Federal de Viçosa.

Natália da Silva Bomfim, Universidade Federal de Viçosa

Mestrado em Ciências da Saúde pela Universidade Estadual de Maringá.

Violeta Nunes de Morais, Universidade Federal de Viçosa

Mestre em Ciência da Nutrição pela Universidade Federal de Viçosa.

Neuza Marques Ramos, Universidade Federal de Viçosa

Mestre em Ciência e Tecnologia de Alimentos pela Universidade Federal de Viçosa.

Rita de Cássia Gonçalves Alfenas, Universidade Federal de Viçosa

Doutorado em Nutrição pela Purdue University, PURDUE, Estados Unidos.

Márcia Cristina Teixeira Ribeiro Vidigal, Universidade Federal de Viçosa

Graduação em Engenharia de Alimentos pela Universidade Federal de Viçosa.

Referências

Abdul Kadir, N. A. A., Rahmat, A., & Jaafar, H. Z. (2015). Protective Effects of Tamarillo (Cyphomandra betacea) Extract against High Fat Diet Induced Obesity in Sprague‐Dawley Rats. Journal of obesity, 2015(1), 846041. doi: 10.1155/2015/846041 DOI: https://doi.org/10.1155/2015/846041

Agostini-Costa, T. S., Pêssoa, G. K. A., Silva, D. B., Gomes, I. S., & Silva, J. P. (2014). Carotenoid composition of berries and leaves from a Cactaceae–Pereskia sp. Journal of functional foods, 11, 178-184. doi: 10.1016/J.JFF.2014.09.015 DOI: https://doi.org/10.1016/j.jff.2014.09.015

Asih, I. A. R. A., Manuaba, I. B. P., Berata, K., & Satriyasa, B. K. (2018). The flavonoid glycosides antioxidant from terong Belanda (Solanum betaceum). Biomedical and Pharmacology Journal, 11(4), 2135-2141. DOI: https://doi.org/10.13005/bpj/1593

Bacchetti, T., Turco, I., Urbano, A., Morresi, C., & Ferretti, G. (2019). Relationship of fruit and vegetable intake to dietary antioxidant capacity and markers of oxidative stress: A sex-related study. Nutrition, 61, 164-172. doi: 10.1016/J.NUT.2018.10.034 DOI: https://doi.org/10.1016/j.nut.2018.10.034

Barbalho, S. M., Guiguer, É. L., Marinelli, P. S., Santos Bueno, P. C. dos., Pescinini-Salzedas, L. M., Santos, M. C. B. dos, Oshiiwa, M., Mendes, C. G., Menezes, M. L. de., Nicolau, C. C. T., Otoboni, A. M., & Alvares Goulart, R. de. (2016). Pereskia aculeata Miller flour: metabolic effects and composition. Journal of medicinal food, 19(9), 890-894. doi: 10.1089/JMF.2016.0052 DOI: https://doi.org/10.1089/jmf.2016.0052

Barbosa, D. M., Santos, G. M. C. dos, Gomes, D. L., Costa Santos, É. M. da, Silva, R. R. V. da, & Medeiros, P. M. de. (2021). Does the label ‘unconventional food plant ’influence food acceptance by potential consumers? A first approach. Heliyon, 7(4), e06731. doi: 10.1016/J.HELIYON.2021.E06731 DOI: https://doi.org/10.1016/j.heliyon.2021.e06731

Barreira, T. F., Paula, G. X. D. Filho, Priore, S. E., Santos, R. H. S., & Pinheiro-Sant’ana, H. M. (2020). Nutrient content in ora-pro-nóbis (Pereskia aculeata Mill.): unconventional vegetable of the Brazilian Atlantic Forest. Food Science and Technology, 41(suppl 1), 47-51. doi: 10.1590/fst.07920 DOI: https://doi.org/10.1590/fst.07920

Bianchi, F., Duque, A. L. R. F., Saad, S. M. I., & Sivieri, K. (2019). Gut microbiome approaches to treat obesity in humans. Applied microbiology and biotechnology, 103(3), 1081-1094. doi: 10.1007/S00253-018-9570-8 DOI: https://doi.org/10.1007/s00253-018-9570-8

Birari, R. B., & Bhutani, K. K. (2007). Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug discovery today, 12(19-20), 879-889. doi: 10.1016/J.DRUDIS.2007.07.024 DOI: https://doi.org/10.1016/j.drudis.2007.07.024

Brasil, D. C. M., Val, R. M. M. D., Ramos, J. A. D. S. C., & Almeida, M. E. F. D. (2020). Juice from leaves of cacti of the genus Pereskia: effect on the physiological parameters of Wistar rats. Ciência Animal Brasileira, 21, e58061. doi: 10.1590/1809-6891v21e-58061 DOI: https://doi.org/10.1590/1809-6891v21e-58061

Chen, Y., Liu, K., Qin, Y., Chen, S., Guan, G., Huang, Y., Chen, Y., & Mo, Z. (2022). Effects of Pereskia aculeate miller petroleum ether extract on complete Freund’s adjuvant-induced rheumatoid arthritis in rats and its potential molecular mechanisms. Frontiers in Pharmacology, 9(13), 869810. doi: 10.3389/fphar.2022.869810 DOI: https://doi.org/10.3389/fphar.2022.869810

Chutkan, R., Fahey, G., Wright, W. L., & McRorie, J. (2012). Viscous versus nonviscous soluble fiber supplements: mechanisms and evidence for fiber-specific health benefits. Journal of the American Association of Nurse Practitioners, 24(8), 476-487. doi: 10.1111/J.1745-7599.2012.00758.X DOI: https://doi.org/10.1111/j.1745-7599.2012.00758.x

Cianciosi, D., Forbes-Hernández, T. Y., Regolo, L., Alvarez-Suarez, J. M., Navarro-Hortal, M. D., Xiao, J., Quiles, J. L., Battino, M., & Giampieri, F. (2022). The reciprocal interaction between polyphenols and other dietary compounds: Impact on bioavailability, antioxidant capacity and other physico-chemical and nutritional parameters. Food Chemistry, 375, 131904. doi: 10.1016/J.FOODCHEM.2021.131904 DOI: https://doi.org/10.1016/j.foodchem.2021.131904

Costamagna, M. S., Zampini, I. C., Alberto, M. R., Cuello, S., Torres, S., Pérez, J., Quispe, C., Schmeda-Hirschmann, G., & Isla, M. I. (2016). Polyphenols rich fraction from Geoffroea decorticans fruits flour affects key enzymes involved in metabolic syndrome, oxidative stress and inflammatory process. Food chemistry, 1(190), 392-402. doi: 10.1016/J.FOODCHEM.2015.05.068 DOI: https://doi.org/10.1016/j.foodchem.2015.05.068

Cruz, T. M., Santos, J. S., Carmo, M. A. V. do, Hellström, J., Pihlava, J. M., Azevedo, L., Granato, D., & Marques, M. B. (2021). Extraction optimization of bioactive compounds from ora-pro-nobis (Pereskia aculeata Miller) leaves and their in vitro antioxidant and antihemolytic activities. Food chemistry, 361, 130078. doi: 10.1016/J.FOODCHEM.2021.130078 DOI: https://doi.org/10.1016/j.foodchem.2021.130078

Demirci-Cekic, S., Özkan, G., Avan, A. N., Uzunboy, S., Çapanoğlu, E., & Apak, R. (2022). Biomarkers of oxidative stress and antioxidant defense. Journal of pharmaceutical and biomedical analysis, 209, 114477. doi: 10.1016/J.JPBA.2021.114477 DOI: https://doi.org/10.1016/j.jpba.2021.114477

Diep, T. T., Pook, C., & Yoo, M. J. Y. (2020). Physicochemical properties and proximate composition of tamarillo (Solanum betaceum Cav.) fruits from New Zealand. Journal of food composition and analysis, 92, 103563. doi: 10.1016/J.JFCA.2020.103563 DOI: https://doi.org/10.1016/j.jfca.2020.103563

Eberhardt, M. V., & Jeffery, E. H. (2006). When dietary antioxidants perturb the thiol redox. Journal of the Science of Food and Agriculture, 86(13), 1996–1998. doi: 10.1002/JSFA.2617 DOI: https://doi.org/10.1002/jsfa.2617

Farhat, G., Drummond, S., & Al‐Dujaili, E. A. (2017). Polyphenols and their role in obesity management: a systematic review of randomized clinical trials. Phytotherapy research, 31(7), 1005-1018. doi: 10.1002/PTR.5830 DOI: https://doi.org/10.1002/ptr.5830

Gannasin, S. P., Mustafa, S., Adzahan, N. M., & Muhammad, K. (2015). In vitro prebiotic activities of tamarillo (Solanum betaceum Cav.) hydrocolloids. Journal of Functional Foods, 19, 10-19. doi: 10.1016/J.JFF.2015.09.004 DOI: https://doi.org/10.1016/j.jff.2015.09.004

Garcia, J. A., Corrêa, R. C., Barros, L., Pereira, C., Abreu, R. M., Alves, M. J., Calhelha, R. C., Bracht, A., Peralta, R. M., & Ferreira, I. C. (2019). Phytochemical profile and biological activities of'Ora-pro-nobis' leaves (Pereskia aculeata Miller), an underexploited superfood from the Brazilian Atlantic Forest. Food chemistry, 294, 302-308. doi: 10.1016/J.FOODCHEM.2019.05.074 DOI: https://doi.org/10.1016/j.foodchem.2019.05.074

García, J. M., Giuffrida, D., Dugo, P., Mondello, L., & Osorio, C. (2018). Development and characterisation of carotenoid-rich microencapsulates from tropical fruit by-products and yellow tamarillo (Solanum betaceum Cav.). Powder technology, 339, 702-709. doi: 10.1016/J.POWTEC.2018.08.061 DOI: https://doi.org/10.1016/j.powtec.2018.08.061

Ghani, U. (2015). Re-exploring promising α-glucosidase inhibitors for potential development into oral anti-diabetic drugs: Finding needle in the haystack. European journal of medicinal chemistry, 103, 133-162. doi: 10.1016/J.EJMECH.2015.08.043 DOI: https://doi.org/10.1016/j.ejmech.2015.08.043

Grove, K. A., Sae‐Tan, S., Kennett, M. J., & Lambert, J. D. (2012). Epigallocatechin‐3‐gallate inhibits pancreatic lipase and reduces body weight gain in high fat‐fed obese mice. Obesity, 20(11), 2311-2313. doi: 10.1038/OBY.2011.139 DOI: https://doi.org/10.1038/oby.2011.139

Joanna Briggs Institute. (2020). JBI Manual for Evidence Synthesis. https://doi.org/10.46658/JBIMES-20-01 DOI: https://doi.org/10.46658/JBIMES-20-01

Khaerunnisa, S., Kusumastuti, K., Mustika, A., & Aminah, N. S. (2019). Mechanism of Solanum betaceum to prevent memory impairment in cigarette smoke-exposed rat. International Journal of Applied Pharmaceutics, 11(3), 25-29. doi: 10.22159/IJAP.2019.V11S3.M1024 DOI: https://doi.org/10.22159/ijap.2019.v11s3.M1024

Kou, M. C., Yen, J. H., Hong, J. T., Wang, C. L., Lin, C. W., & Wu, M. J. (2009). Cyphomandra betacea Sendt. phenolics protect LDL from oxidation and PC12 cells from oxidative stress. LWT-Food Science and Technology, 42(2), 458-463. doi: 10.1016/J.LWT.2008.09.010 DOI: https://doi.org/10.1016/j.lwt.2008.09.010

Kumar, C. S., Sivakumar, M., & Ruckmani, K. (2016). Microwave-assisted extraction of polysaccharides from Cyphomandra betacea and its biological activities. International Journal of Biological Macromolecules, 92, 682-693. doi: 10.1016/J.IJBIOMAC.2016.07.062 DOI: https://doi.org/10.1016/j.ijbiomac.2016.07.062

Lin, R., Li, D., Xu, Y., Wei, M., Chen, Q., Deng, Y., & Wen, J. (2021). Chronic cereulide exposure causes intestinal inflammation and gut microbiota dysbiosis in mice. Environmental Pollution, 1(288), 117814. doi: 10.1016/J.ENVPOL.2021.117814 DOI: https://doi.org/10.1016/j.envpol.2021.117814

Liu, F., Liu, J., Liu, Y., Zhang, Y., & Ding, X. (2021). Decoction could ameliorate intestinal permeability by regulating the intestinal expression of tight junction proteins and p-VASP in septic rats. Journal of Ethnopharmacology, 268, 113562. doi: 10.1016/J.JEP.2020.113562 DOI: https://doi.org/10.1016/j.jep.2020.113562

Maciel, V. B. V., Yoshida, C. M. P., Boesch, C., Goycoolea, F. M., & Carvalho, R. A. (2018). Iron uptake by Caco-2 cells from a Brazilian natural plant extract loaded into chitosan/pectin nano-and micro-particles. [Abstract]. Proceedings of the Nutrition Society, Cambridge University Press. doi: 10.1017/s0029665118000393 DOI: https://doi.org/10.1017/S0029665118000393

Mariutti, L. R. B., Rebelo, K. S., Bisconsin, A. Jr., Morais, J. S. de, Magnani, M., Maldonade, I. R., Madeira, N. R., Tiengo, A., Maróstica, M. R. Jr., & Cazarin, C. B. B. (2021). The use of alternative food sources to improve health and guarantee access and food intake. Food Research International, 149, 110709. doi: 10.1016/J.FOODRES.2021.110709 DOI: https://doi.org/10.1016/j.foodres.2021.110709

Martin, D., Lopes, T., Correia, S., Canhoto, J., Marques, M. P. M., & Carvalho, L. A. B. de (2021). Nutraceutical properties of tamarillo fruits: A vibrational study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 252, 119501. doi: 10.1016/J.SAA.2021.119501 DOI: https://doi.org/10.1016/j.saa.2021.119501

Muliarta, M., Tirtayasa, K., Prabawa, P. Y., & Wiryadana, K. A. (2020). Tamarillo Consumption Associated with Increased Acetylcholinesterase Activity and Improved Oxidative Stress Markers in Farmers Exposed to Daily Pesticide-related Activities in Baturiti, Bali, Indonesia. Open Access Macedonian Journal of Medical Sciences, 8(E), 244-250. doi: 10.3889/oamjms.2020.3265 DOI: https://doi.org/10.3889/oamjms.2020.3265

Mutalib, M. A., Ali, F., Othman, F., Ramasamy, R., & Rahmat, A. (2016). Phenolics profile and anti-proliferative activity of Cyphomandra betacea fruit in breast and liver cancer cells. SpringerPlus, 5, 1205. doi: 10.1186/S40064-016-3777-X DOI: https://doi.org/10.1186/s40064-016-3777-x

Nascimento, G. E. do, Corso, C. R., Paula Werner, M. F. de, Baggio, C. H., Iacomini, M., & Cordeiro, L. M. (2015). Structure of an arabinogalactan from the edible tropical fruit tamarillo (Solanum betaceum) and its antinociceptive activity. Carbohydrate Polymers, 13(116), 300-306. doi: 10.1016/j.carbpol.2014.03.032 DOI: https://doi.org/10.1016/j.carbpol.2014.03.032

Nascimento, G. E. do., Hamm, L. A., Baggio, C. H., Paula Werner, M. F. de, Iacomini, M., & Cordeiro, L. M. (2013). Structure of a galactoarabinoglucuronoxylan from tamarillo (Solanum betaceum), a tropical exotic fruit, and its biological activity. Food chemistry, 141(1), 510-516. doi: 10.1016/j.foodchem.2013.03.023 DOI: https://doi.org/10.1016/j.foodchem.2013.03.023

Nascimento, G. E. do, Iacomini, M., & Cordeiro, L. M. (2016). A comparative study of mucilage and pulp polysaccharides from tamarillo fruit (Solanum betaceum Cav.). Plant physiology and biochemistry, 104, 278-283. doi: 10.1016/J.PLAPHY.2016.04.055 DOI: https://doi.org/10.1016/j.plaphy.2016.04.055

Orqueda, M. E., Rivas, M., Zampini, I. C., Alberto, M. R., Torres, S., Cuello, S., Sayago, J., Thomasp-Valdes, S., Jiménez-Aspee, F., Schmeda-Hirschmann, G., & Isla, M. I. (2017). Chemical and functional characterization of seed, pulp and skin powder from chilto (Solanum betaceum), an Argentine native fruit. Phenolic fractions affect key enzymes involved in metabolic syndrome and oxidative stress. Food Chemistry, 1(216), 70-79. doi: 10.1016/J.FOODCHEM.2016.08.015 DOI: https://doi.org/10.1016/j.foodchem.2016.08.015

Orqueda, M. E., Torres, S., Zampini, I. C., Cattaneo, F., Di Pardo, A. F., Valle, E. M., Jiménez-Aspee, F., Schmeda-Hierschmann, G., & Isla, M. I. (2020). Integral use of Argentinean Solanum betaceum red fruits as functional food ingredient to prevent metabolic syndrome: Effect of in vitro simulated gastroduodenal digestion. Heliyon, 6(2), e03387. doi: 10.1016/J.HELIYON.2020.E03387 DOI: https://doi.org/10.1016/j.heliyon.2020.e03387

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372. doi: 10.1136/BMJ.N71 DOI: https://doi.org/10.1136/bmj.n71

Philippi, S. T., Latterza, A. R., Cruz, A. T. R., & Ribeiro, L. C. (1999). Pirâmide alimentar adaptada: guia para escolha dos alimentos. Revista de nutrição, 12(1), 65-80. doi: 10.1590/S1415-52731999000100006 DOI: https://doi.org/10.1590/S1415-52731999000100006

Pinto, N. D. C. C., Duque, A. P. D. N., Pacheco, N. R., Mendes, R. D. F., Motta, E. V. D. S., Bellozi, P. M. Q., Ribeiro, A., Salvador, M. J., & Scio, E. (2015). Pereskia aculeata: A plant food with antinociceptive activity. Pharmaceutical biology, 53(12), 1780-1785. doi: 10.3109/13880209.2015.1008144 DOI: https://doi.org/10.3109/13880209.2015.1008144

Raka, I. A., Asih, I. A. R. A., Manuaba, I. B. P., Berata, K., Komang, B., & Satriyasa, I. (2018). Intake Flavonoid Glycosides of Fruit Solanum betaceum in Its Activity as a Candidate of Anti-Stress Oxidative. International Journal of Pharmaceutical and Phytopharmacological Research (eIJPPR), 8(6), 1-7. https://eijppr.com/yX1t1yo

Reagan‐Shaw, S., Nihal, M., & Ahmad, N. (2008). Dose translation from animal to human studies revisited. The FASEB journal, 22(3), 659-661. doi: 10.1096/FJ.07-9574LSF DOI: https://doi.org/10.1096/fj.07-9574LSF

Sihombing, J. R., Sidabutar, C. A. B. S., Fachrial, E., Almahdy, A., Chaidir, Z., & Dharma, A. (2017). Utilization of Fruit Peel Extracts of Persea americana, Cyphomandra betacea, Mangifera odorata and Archidendron pauciflorum as Antidiabetic in Experimental Rats. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 8(1), 1407-1410. http://repository.uhn.ac.id/handle/123456789/7185

Salazar-Lugo, R., Barahona, A., Ortiz, K., Chávez, C., Freire, P., Méndez, J., Bermeo, B., Santamaria, M., Salas, H., & Oleas, M. (2016). Efecto del consumo de jugo de tomate de árbol (Cyphomandra betacea) sobre el perfil lipídico y las concentraciones de glucosa en adultos con hiperlipidemia, Ecuador. Archivos Latinoamericanos de Nutrición, 66(2), 121-128. https://medes.com/publication/110362

Santoso, M., Ong, L. L., Aijijiyah, N. P., Wati, F. A., Azminah, A., Annuur, R. M., Fadlan, A., & Judeh, Z. M. (2022). Synthesis, α-glucosidase inhibition, α-amylase inhibition, and molecular docking studies of 3, 3-di (indolyl) indolin-2-ones. Heliyon, 8(3), e09045. doi: 10.1016/J.HELIYON.2022.E09045 DOI: https://doi.org/10.1016/j.heliyon.2022.e09045

Scortichini, S., Boarelli, M. C., Silvi, S., & Fiorini, D. (2020). Development and validation of a GC-FID method for the analysis of short chain fatty acids in rat and human faeces and in fermentation fluids. Journal of Chromatography B, 1143, 121972. doi: 10.1016/J.JCHROMB.2020.121972 DOI: https://doi.org/10.1016/j.jchromb.2020.121972

Silva, D. O., Seifert, M., Nora, F. R., Bobrowski, V. L., Freitag, R. A., Kucera, H. R., Nora, L., & Gaikwad, N. W. (2017). Acute toxicity and cytotoxicity of Pereskia aculeata, a highly nutritious cactaceae plant. Journal of Medicinal Food, 20(4), 403-409. doi: 10.1089/JMF.2016.0133 DOI: https://doi.org/10.1089/jmf.2016.0133

Silveira, M. G., Picinin, C. T., Cirillo, M. A., Freire, J. M., & Barcelos, M. D. F. P. (2020). Nutritional assay Pereskia spp.: unconventional vegetable. Anais da Academia Brasileira de Ciências, 92(1), e20180757. doi: 10.1590/0001-3765202020180757 DOI: https://doi.org/10.1590/0001-3765202020180757

Soobrattee, M. A., Neergheen, V. S., Luximon-Ramma, A., Aruoma, O. I., & Bahorun, T. (2005). Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutation Research/Fundamental and Molecular mechanisms of mutagenesis, 579(1-2), 200-213. doi: 10.1016/J.MRFMMM.2005.03.023 DOI: https://doi.org/10.1016/j.mrfmmm.2005.03.023

Takeiti, C. Y., Antonio, G. C., Motta, E. M., Collares-Queiroz, F. P., & Park, K. J. (2009). Nutritive evaluation of a non-conventional leafy vegetable (Pereskia aculeata Miller). International Journal of Food Sciences and Nutrition, 60(1), 148-160. doi: 10.1080/09637480802534509 DOI: https://doi.org/10.1080/09637480802534509

Terra, S. B., & Viera, C. T. R. (2019). Plantas Alimentícias Não Convencionais (PANCs): levantamento em zonas urbanas de Santana do Livramento, RS. Ambiência, 15(1), 112-130. doi: 10.5935/ambiencia.2019.01.07 DOI: https://doi.org/10.5935/ambiencia.2019.01.07

Torres, T. M. S., Álvarez-Rivera, G., Mazzutti, S., Sánchez-Martínez, J. D., Cifuentes, A., Ibáñez, E., & Ferreira, S. R. S. (2021). Neuroprotective potential of extracts from leaves of ora-pro-nobis (Pereskia aculeata) recovered by clean compressed fluids. The Journal of Supercritical Fluids, 179, 105390. doi: 10.1016/J.SUPFLU.2021.105390 DOI: https://doi.org/10.1016/j.supflu.2021.105390

Vieira, C. R., da Silva, B. P., do Carmo, M. A. V., Azevedo, L., Nogueira, D. A., Duarte Martino, H. S., & Silva, R. R. (2019). Effect of Pereskia aculeata Mill. in vitro and in overweight humans: A randomized controlled trial. Journal of food biochemistry, 43(7), e12903. doi: 10.1111/JFBC.12903 DOI: https://doi.org/10.1111/jfbc.12903

Vieira, C. R., Grancieri, M., Martino, H. S. D., César, D. E., & Barra, R. R. S. (2020). A beverage containing ora-pro-nobis flour improves intestinal health, weight, and body composition: A double-blind randomized prospective study. Nutrition, 78, 110869. doi: 10.1016/J.NUT.2020.110869 DOI: https://doi.org/10.1016/j.nut.2020.110869

Wang, S., & Zhu, F. (2020). Tamarillo (Solanum betaceum): Chemical composition, biological properties, and product innovation. Trends in Food Science & Technology, 95, 45-58. doi: 10.1016/j.tifs.2019.11.004 DOI: https://doi.org/10.1016/j.tifs.2019.11.004

Wang, Y., Yang, M., Lee, S. G., Davis, C. G., Koo, S. I., & Chun, O. K. (2012). Dietary total antioxidant capacity is associated with diet and plasma antioxidant status in healthy young adults. Journal of the Academy of Nutrition and Dietetics, 112(10), 1626-1635. doi: 10.1016/J.JAND.2012.06.007 DOI: https://doi.org/10.1016/j.jand.2012.06.007

Williams, R. J., Spencer, J. P., & Rice-Evans, C. (2004). Flavonoids: antioxidants or signalling molecules? Free radical biology and medicine, 36(7), 838-849. doi: 10.1016/J.FREERADBIOMED.2004.01.001 DOI: https://doi.org/10.1016/j.freeradbiomed.2004.01.001

Zhou, J. F., Wang, W. J., Yin, Z. P., Zheng, G. D., Chen, J. G., Li, J. E., Chen, L. L. & Zhang, Q. F. (2021). Quercetin is a promising pancreatic lipase inhibitor in reducing fat absorption in vivo. Food Bioscience, 43, 101248. doi: 10.1016/J.FBIO.2021.101248 DOI: https://doi.org/10.1016/j.fbio.2021.101248

Publicado

2025-04-04

Como Citar

Ferreira, R. de S., Bomfim, N. da S., Morais, V. N. de, Ramos, N. M., Alfenas, R. de C. G., & Vidigal, M. C. T. R. (2025). O consumo de ora-pro-nóbis e tamarillo melhora quais indicadores de saúde?. Ciência E Natura, 47, e87814. https://doi.org/10.5902/2179460X87814

Edição

Seção

Biologia-Botânica