# Analysis of the COVID-19 Pandemic in Pelotas

## Authors

• Gustavo Braz Kurz Universidade Federal de Pelotas, Pelotas, RS
• Daniela Buske Universidade Federal de Pelotas, Pelotas, RS
• Glênio Aguiar Gonçalves Universidade Federal de Pelotas, Pelotas, RS

## Keywords:

COVID-19, Epidemiological models, Mathematical modeling

## Abstract

This work presents an analysis of the cases contamination situation by the SARS-CoV-2 virus during the pandemic COVID-19, in the city of Pelotas, in the south of Rio Grande do Sul. Using a simple compartmentalized mathematical model and deterministic, a projection of the number cases until the end is presented, year 2020, considering 3 different scenarios. The evolution of pandemic considering curves of accumulated, recovered, active and Deaths; the occupation of COVID exclusive ICU beds; cases and deaths per epidemiological week and the variation in the effective number of reproduction and the percentage of social isolation in Pelotas will also be presented.

## Author Biographies

### Gustavo Braz Kurz, Universidade Federal de Pelotas, Pelotas, RS

Possui Graduação em Matemática Licenciatura pela Universidade Federal de Pelotas e atualmente é aluno especial do programa de pós-graduação em modelagem matemática da mesma instituição.

## References

Cori, N. M. F. C., A. Ferguson, Cauchemez, S. A. (2013). New framework and software to estimate time-varying reproduction numbers during epididemics. American Journal of Epidemiology, 178, 1505–1512.

Delamater, S. E. J. L. T. F. Y. Y. T., P. L., Jacobsen, K. H. (2019). Complexity of the basic reproduction number (r0). American Association for the advancement of Science, 25, 1–4.

Governo do Rio Grande do Sul (2020). Modelo de distanciamento controlado do RS. Governo do Rio Grande do Sul, Porto Alegre, Brasil, URL https://sistema3as.rs.gov.br/inicial.

Kermack, W., Mckendrick, A. (1991a). Contributions to the matehmatical thoeory of epidemics-i. Bulletin of Mathematical Biology, 53, 33–55.

Kermack, W., Mckendrick, A. (1991b). Contributions to the matehmatical thoeory of epidemics-ii. the problem of endemicity.Bulletin of Mathematical Biology, 53, 57–87.

Kermack, W., Mckendrick, A. (1991c). Contributions to the matehmatical thoeory of epidemics-iii. further studies of the problem of endemicity. Bulletin of Mathematical Biology, 53, 89–118.

Kissler, T. C. G. E. G. Y., S. M., Lipsitch, M. (2020). Projecting the transmission dynamics of sars-cov-2 through the post pandemic period. American Association for the advancement of Science, 138, 860–868.

## Published

2021-11-08 — Updated on 2022-07-14

## How to Cite

Kurz, G. B., Buske, D., Quadros, R. S., & Gonçalves, G. A. (2022). Analysis of the COVID-19 Pandemic in Pelotas. Ciência E Natura, 43, e9. https://doi.org/10.5902/2179460X66994 (Original work published November 8, 2021)

SPECIAL EDITION