Simulation of a model of dispersion of pollution with chemical reaction in the atmospheric boundary layer

Guilherme Jahnecke Weymar, Daniela Buske, Régis Sperotto de Quadros, Jonas da Costa Carvalho

Abstract


This work presents an analytical representation for a dispersion model of pollutants that considers the chemical reaction, the model uses the three-dimensional advection-diffusion equation to describe the concentration field in the atmospheric boundary layer and to represent the chemical reaction that the pollutant suffers is included a source term in the equation. To solve the problem we use the modified Adomian Decomposition method associated with the 3D-GILTT method. The model was applied to simulate the dispersion and transportation of the $SO_2$ (sulfur dioxide), a pollutant produced from the burning of mineral coal, emitted by the Presidente Médici thermoelectric plant, located in Candiota / RS. With the analysis of the results it can be observed that the concentrations generated by the model are satisfactory and that the approach used is a new proposal for the description of the concentration field of a substance.


Keywords


: Chemical reaction; Advection-diffusion equation; Adomian decomposition method; 3D-GILTT method

References


Adomian, G. (1994). Solving frontier problem of physics: the decomposition method. Springer.

Arbage, M. C. A., Degrazia, G. A., Moraes, O. L. (2006). Simulação euleriana da dispersão local da pluma de poluente atmosférico de candiota-rs. Brasileira de Meteorologia, 21, 153–160.

Buske, D., Vilhena, M. T., Tirabassi, T., Bodmann, B. (2012). Air pollution steady-state advection-diffusion equation: the general three-dimensional solution. Journal of Environmental Protection, 4, 1–10.

Finlayson-Pitts, B., Pitts, J. (2000a). Spectroscopy and photochemistry fundamentals. Em: Chemistry of the Upper and Lower Atmosphere, pp. 43-85.

Finlayson-Pitts, B. J., Pitts, J. N. (2000b). Photochemistry of important atmospheric species. Em: Chemistry of the Upper and Lower Atmosphere, pp. 86-129.

Hanna, S., Paine, R. (1989). Hibrid plume dispersion model (hpdm) development and evaluation. Journal of Applied Meteorology, 28, 206–224.

Jacobson, M. (2005). Fundamentals of Atmospheric Modeling, 2o edn. Cambridge University Press.

Mélières, M., Maréchal, C. (2010). Climate Change: Past, Present and Future. CRDP de l’Académic de Grenoble.

Moreira, D., Tirabassi, T. (2004). Modelo matemático de dispersão de poluentes na atmosfera: um instrumento técnico para gestão ambiental. Ambiente & Sociedade, 7, 169-171.

Moreira, D. M., Vilhena, M. T., Carvalho, J. d. C. (2007). Tritium dispersion simulation in the atmosphere from angra i nuclear power plant. International Journal of Nuclear Energy Science and Technology, 3, 118-130.

Pasquill, F., Smith, F. (1983). Atmospheric Diffusion. Halsted Press.

Rudek, H. K., Moortgat, G., Sander, R., Sörensen, R. (2013). The mpi-mainz uv/vis spectral atlas of gaseous molecules of atmospheric interest. Earth System Science Data, pp. 365-373.

Schlatter, T. (2009). Atmospheric composition and vertical structure. Environmental Impact and Manufacturing, pp. 1-53.

Sethi, D. (1971). Photo-oxidation of sulfur dioxide. Air Pollution Control Association, pp. 418-420.

Shirmer, W. N., Lisboa, H. d. M. (2008). Química da atmosfera: Constituintes naturais, poluentes e suas reações. Tecno-Lógica, 46, 12-37.

Thekaekara, M. (1973). Solar energy motion in space (semis). Symposium Solar Radiation Measurements and Instrumentation, pp. 414-442.




DOI: http://dx.doi.org/10.5902/2179460X30720

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Ciência e Natura



Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.