High resolution wind field study with Wind Ninja Model for estimating Wind Energy

César Magno Leite de Oliveira Júnior, Nivea Maria Barreto Nunes Oleques, Fabricio Pereira Harter, Jonas da Costa Carvalho, Marcelo Romero de Moraes

Abstract


In this work it was proposed to predict high resolution wind fields in order to simulate the wind speed and direction variables in the Cerro Chato wind complex located in the city of Santana do Livramento / RS. For this, numerical weather forecasting techniques were used, using the \ textit {Weather Research and Forecasting} (WRF) model and a microscale mass and momentum conservation model, known as Windninja. In this study, the simulated data was compared with the observation data collected by the towers of the wind farm in question, using statistical procedures. The results presented by the Windninja simulation software were efficient, but not very effective.


Keywords


WRF; Wind Ninja; Numerical methods; Wind forecast

References


FORTHOFER, J.; SHANNON, K.; BUTLER, B. Simulating diurnally driven slope winds with windninja. USDA Forest Service, Rocky Mountain Research Station, Missoula, MT, 2009.

HONG, S.-Y.; NOH, Y.; DUDHIA, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly weather review, v. 134, n. 9, p. 2318–2341, 2006.

KAIN, J. S. The kain–fritsch convective parameterization: an update. Journal of applied meteorology, v. 43, n. 1, p. 170–181, 2004.

METED. Fundamentos de los modelos: Versión 2. Booklet, 2010.

METED. Fundamentos de pnt: Física del modelo. Booklet, 2014.

NATIONAL CENTER FOR ATMOSFERIC RESEARCH – Wrf-arw online tutorial. Estados Unidos – 2019.

NOAH - Implementation and verification of the unified noah land surface model in the wrf model. - 2014.

OLIVEIRA, A. M. de; SILVA, J. R. da; GOMES, R. G. Testes nas parametrizações de microfísica e de camada limite planetária na simulação de um sistema convectivo de mesoescala. Universidade Federal de Pelotas, 2010.

QUÉRÉ, C. L. et al. Global carbon budget 2016. 2016.

SAWYER, S.; FRIED, L.; SHUKLA, S.; QIAO, L. Global wind report 2017—annual market update. Global Wind Energy Council: Brussels, Belgium, 2017.

STENSURD. An overview of convection parametrization. Booklet, 2012.

WILKS, D. S. Statistical methods in the atmospheric sciences. Academic press, 2011.




DOI: https://doi.org/10.5902/2179460X53215

Copyright (c) 2020 Ciência e Natura

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

DEAR AUTHORS,

PLEASE, CHECK CAREFULLY BEFORE YOUR SUBMISSION:

1. IF ALL AUTHORS "METADATA" (ORCID, LINK TO LATTES, SHORT BIOGRAPHY, AFFILIATION) WERE ADDED,

2. THE CORRECT IDIOM YOUR SECTION,

3 IF THE HIGHLIGHTS WERE ADDED,

4. IF THE GRAPHIC ABSTRACTS WAS ADDED,

5. IF THE REVIEWERS INDICATION WAS DONE,

6. IF THE REFERENCES FORMAT ARE CORRECT(ABNT)

7. IF THE RESOLUTION YOUR FIGURES (600 DPI) ARE SUITABLE

8.  IF THE STATEMENT BY THE ETHICS COMMITTEE (IF IT INVOLVES HUMANS) WAS ADDED;

9. IF THE DECLARATION OF ORIGINALITY WAS ADDED.

10. IF THE TEXT IS ORIGINAL. IF THE IDEA HAS ALREADY BEEN REGISTERED IN SUMMARY FORM, OR PUBLISHED IN CONGRESS ANNUALS, PLEASE INFORM THE EDITOR.