Intraseasonal Ensemble Forecasting for the Brazilian Northeastern




Intraseasonal climate forecast, Regional climate model, Dynamical ensemble forecast


This preliminary analysis, uses simulations performed by the National Centers for Environmental Prediction (NCEP) coupled forecast system model version 2 (CFSv2) /regional climate model RegCM-4.6, allowed to be observed in this work, the data analyzed were the information of the surface wind intensity, by the analysis and comparison of the simulations carried out for the Alcântara region on the coast of the state of Maranhão. These simulations were stored in the period from February to June 2018. The analysis sought to validate with ERA5 reanalysis data from the European Center for Medium-Range Weather Forecasts (ECMWF). The observed result shows great potential for use of prediction ensemble techniques, since in the observed results the smallest anomalies were observed in the intraseasonal ensemble prediction to the Alcântara region in the intensity wind, in comparison to the simulation without being ensemble, presenting greater deviations and when closer to the forecast, in itself, greater deviations presented. The intraseasonal Ensemble estimation ends up filtering the terms of high frequency, being the best estimate and presenting intraseasonal predictions more balanced.


Download data is not yet available.

Author Biographies

Cleber Souza Corrêa, Instituto de Aeronáutica e Espaço - IAE, São José dos Campos, SP

Pesquisador do Instituto de Controle do Espaço Aéreo (ICEA) e do Instituto de Aeronáutica e Espaço (IAE)

Fabricio Pereira Härter, Universidade Federal de Pelotas - UFPel, Pelotas, RS

Professor Associado da Universidade Federal de Pelotas (UFPel)

Gerson Luiz Camillo, Instituo Federal Catarinense, Videira, SC

Professor do Instituto Federal Catarinense nas áreas de Redes e Arquitetura de Computadores.


ALBERGEL, C., DUTRA, E., MUNIER, S., CALVET, J.-C., MUNOZ-SABATER, J., de ROSNAY, P., and BALSAMO, G.: ERA-5 and ERA-Interim driven ISBA land surface model simulations: which one performs better?, Hydrol. Earth Syst. Sci., (2018), 22, 3515-3532.

CHEN, N., AJ. MAJDA, CT. SABEERALI, and RS. AJAYAMOHAN, Predicting Monsoon Intraseasonal Precipitation using a Low-Order Nonlinear Stochastic Model. J. Climate,(2018).31, 4403–4427, doi:

CORRÊA, CS, CAMILLO, GL, COUTO, VM, FISCH, G, do NASCIMENTO CORRÊA, F., & HÄRTER, F. Climate Forecasts at the Centro de Lançamento de Alcântara Using the Climate Model RegCM4. Journal of Aerospace Technology and Management, (2017). 9(1), 18-28. doi: 10.5028/jatm.v9i1.649

CORRÊA, CS, REBOITA, MS, CAMILLO, GL, COUTO, VM and CORRÊA, FN. Intraseasonal Climate Forecast For The Alcântara Region In Northeastern Brazil. Revista Brasileira de Geografia Fisica. (2018). 11(6), 1963-1970. doi: 10.26848/rbgf.v11.6.p1963-1970.

DA ROCHA, RP ; CUADRA, SV.; REBOITA, MS ; KRÜGER, LF ; AMBRIZZI, T. ; KRISCHE, N . Effects of RegCM3 parameterizations on simulated rainy season over South America. Climate Research, (2012) v. 52, p. 253-265.

DE SOUZA, EB, CARMO, AMC, MOARES, BC, NACIF, A., da SILVA FERREIRA, DB, ROCHA, EJP., & SOUZA, PJDOP. Sazonalidade da Precipitação sobre a Amazônia Legal Brasileira: Clima Atual e Projeções Futuras Usando o Modelo RegCM4 (Seasonal Precipitation Over The Brazilian Legal Amazon: Climate Current and Future Projections Using RegCM4 Model). Revista Brasileira de Climatologia, 18 (2016).

EMANUEL, KA. A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci. (1991) 48:2313-2329. doi: 10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2

HOLTSLAG, AAM, DE BRUIJN, EIF, PAN H-L, A high resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev.. (1990), 118:1561-1575. doi: 10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2

GIORGI, F, COPPOLA, E, SOLMON, F, MARIOTTI, L., SYLLA, MB, BI, X., ... & TURUNCOGLU, UU. RegCM4: model description and preliminary tests over multiple CORDEX domains. Climate Research, (2012) 52, 7-29.

GIORGI, F., ELGUINDI, N., COZZINI, S., SOLMON, F.. Regional Climatic Model RegCM User’s Guide Version 4.4. (2015).

GNEITING, T. & RAFTERY, AF. Weather Forecasting with Ensemble Methods. Science. (2005). vol. 310, pp. 248-249. doi: 10.1126/science.1115255.

GRELL, GA. Prognostic evaluation of assumptions used by cumulus parameterizations. Monthly Weather Review, (1993), 121(3), 764-787.

LLOPART, M., Da ROCHA, RP, REBOITA, M. et al.. Sensitivity of simulated South America climate to the land surface schemes in RegCM4. Clim. Dyn.. (2017), 49: 3975-3987.

MARBAIX, P, GALLEE, H, BRASSEUR, O, VAN YPERSELE, JP. Lateral boundary conditions in regional climate models: a detailed study of the relaxation procedure. Mon. Wea. Rev.. (2003), 131:461-479

PAL, JS, GIORGI, F, BI, X, ELGUINDI, N, SOLMON, F, RAUSCHER, SA., ... & ASHFAQ, M. Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bulletin of the American Meteorological Society, (2007), 88(9), 1395-1409.

PAL, JS., ELTAHIR, EA, & SMALL, EE. Simulation of regional-scale water and energy budgets- Representation of subgrid cloud and precipitation processes within RegCM. Journal of Geophysical Research, (2000), 105(D24), 29579-29594.

PREIN, AF, & GOBIET, A. Impacts of uncertainties in European gridded precipitation observations on regional climate analysis. International Journal of Climatology, (2017), 37(1), 305-327.

REBOITA, MS, FERNANDEZ, JPR, LLOPART, MP, Da ROCHA, RP, PAMPUCH, LA, CRUZ, FT Assessment of RegCM4.3 over the CORDEX South America domain: sensitivity analysis for physical parameterization schemes. Clim. Res.. (2014), 60:215-234.

REBOITA, MS., AMARO, TR & De SOUZA, MR. Winds: intensity and power density simulated by RegCM4 over South America in present and future climate. Clim Dyn.. (2017) doi:

SABEERALI, CT, AJAYAMOHAN, RS, GIANNAKIS, D, et al., Extraction and prediction of indices for monsoon intraseasonal oscillations: an approach based on nonlinear Laplacian spectral analysis. Clim. Dyn. (2017), 49: 3031. doi:

SAHA, S., MOORTHI, S., WU, X., WANG, J., NADIGA, S., TRIPP, P., ...&EK, M.. The NCEP climate forecast system version 2. Journal of Climate, (2014), 27(6), 2185-2208.

VERA, CS, ALVAREZ, MS, GONZALEZ, PLM, et al.. Seasonal cycle of precipitation variability in South America on intraseasonal timescales. Clim Dyn.. (2017), doi:

WASYL, D. & MATTHEW, CW. Extended-Range Ensemble Predictions of Convection in the North Australian Monsoon Region. Frontiers in Earth Science Journal. (2017), vol. 5, p. 28. doi: 10.3389/feart.2017.00028.

ZHANG, Z; CAYAN, DR.; PIERCE, DW. Subseasonal to Seasonal Temperature Prediction Skill Over the California Region from Global Dynamical Forecasts. California’s Fourth Climate Change Assessment, California Energy Commission. Publication Number: CCCA4-CEC-2018-010 2018.

ZENG, X., ZHAO, M., DICKINSON, RE.. Intercomparison of Bulk Aerodynamic algorithms for the computation of Sea surface fluxes using TOGA COARE and TAO data. Journal of Climate (1998), 11:2628-2644. doi: 10.1175/1520-0442(1998)011<2628:10BAAF>2.0.CO;2




How to Cite

Corrêa, C. S., Härter, F. P., & Camillo, G. L. (2019). Intraseasonal Ensemble Forecasting for the Brazilian Northeastern. Ciência E Natura, 41, e10.




Most read articles by the same author(s)