Intraseasonal climate forecast of iba tropical cyclone in northeast Brazil using the regional climate model - a case study

Cleber Souza Corrêa, Gerson Luiz Camillo

Abstract


This study aimed to analyze the operationally stored simulations of the RegCM4.7 model using simulations performed by the National Center for Environmental Prediction (NCEP) coupled forecast system model version 2 (CFSv2) in downscaling. The South American domain, however, seeks to observe prevailing weather systems that may affect the Alcântara Rocket Launch Center in Maranhão. One case is analyzed with three different global initializations of the CFSv2 model. On March 25, 2019, the occurrence of Cyclone Iba on the southern coast of Bahia. The RegCM4.7 Regional Model was able to simulate tropical cyclone three months in advance. This performance is very important because the influence of these anomalous systems affect wind intensity and rainfall behavior in the Alcântara region because it would affect the convective processes on the continent in northeastern Brazil.


Keywords


Intraseasonal Climate Forecast; Regional Climate Model; Tropical Cyclone

Full Text:

HTML

References


CORRÊA, C.S., CAMILLO, G.L., COUTO, V.M., FISCH, G., CORRÊA, F.N., & HARTER, F. Climate Forecasts at the Centro de Lançamento de Alcântara Using the Climate Model RegCM4. Journal of Aerospace Technology and Management, 9(1), 18-28. (2017). doi:10.5028/jatm.v9i1.649

CORRÊA, C.S.; HARTER, F.P.; CAMILLO, G.L. Intraseasonal Ensemble Forecasting for the Brazilian Northeastern. Ciência e Natura, Santa Maria v.41, e10, p. 01-08, (2019) doi:10.5902/2179460X35807

DIAS PINTO, J.R.; REBOITA, M.S.; DA ROCHA, R.P. Synoptic and dynamical analysis of subtropical cyclone Anita (2010) and its potential for tropical transition over the South Atlantic Ocean. J. Geophys. Res. Atmos., v. 118, 10,870-10,883, (2013).

DINIZ, F.A. & KOUSKY, V.E.. Ciclone no Atlântico Sul Análise Sinótica e Observação. XIII Congresso Brasileiro de Meteorologia (2004).

EMANUEL, K. A. An air–sea interaction for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–604. (1986) doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2

EMANUEL, K. A. The maximum intensity of hurricanes. J. Atmos. Sci., 45, 1143–1155. (1988). doi: 10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2

EMANUEL, K. A. The theory of hurricanes. Annu. Rev. Fluid Mech., 23, 179–196. (1991).

EMANUEL, K. A. Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 3969–3976. (1995). doi: 10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2

HOLLAND, G. J., The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 2519–2541. (1997). doi: 10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2

HOLTSLAG, AAM, DE BRUIJN, EIF, PAN H-L, A high resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev.. (1990), 118:1561-1575. doi:10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2

GIORGI, F., ELGUINDI, N., COZZINI, S., SOLMON, F.. Regional Climatic Model RegCM User’s Guide Version 4.4. (2015).

GRAY, WM. The Formation of Tropical Cyclones. Meteorol. Atmos. Phys. 67, 37-69 (1998), doi: 10.1007/BF01277501

KAIN, J. S. The Kain-Fritsch convective parameterization: An Update. Journal of Applied Meteorology, v. 43, n. 1, p. 170-181, (2004).

KAIN, J. S.; FRITSCH, J. M. A one-dimensional entraining/detraining plume model and its application in convective parameterization. Journal of the Atmospheric Sciences, v. 47, n. 23, p. 2748-2802, (1990).

KUO, H.L. On Formation and Intensification of Tropical Cyclones Through Latent Heat Release by Cumulus Convection. J. Atmos. Sci., 22, 40–63, (1965) doi: 10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2

MARBAIX, P, GALLEE, H, BRASSEUR, O, VAN YPERSELE, JP. Lateral boundary conditions in regional climate models: a detailed study of the relaxation procedure. Mon. Wea. Rev.. (2003), 131:461-479

REBOITA, MS, GAN, MA, DA ROCHA, RP, & CUSTÓDIO, SI. Ciclones em Superfície nas Latitudes Austrais: Parte II Estudo de Casos. Revista Brasileira de Meteorologia, 32(4), 509-542. (2017) doi:10.1590/0102-7786324002

OLESON, K.W., NIU, G.Y., YANG, Z. L., LAWRENCE, D. M., THOMTON, P. E., LAWRENCE, P. J., STÖCKLI, R., DICKINSON, R. E., BONAN, G. B., LEVIS, S., DAI, A., QIAN, T.. Improvements to the Community Land Model and their impact on the hydrological cycle. Journal of Geophysical Research 113(G1). (2008) doi:10.1029/2007JG000563

OLESON, K.W., LAWRENCE, D.M., BONAN, G.B., FLANNER, M.G., KLUZEK, E., LAWRENCE, P.J., LEVIS, S., SWENSON, S.C., THOMTON, P.E., DAI, A., DECKER, M. R., DICKINSON, FEDDEMA, J., HEALD, C.L., HOFFMAN, F., LAMARQUE, J.-F., MAHOWALD, N., NIU, G.-Y., QIAN, T., RANDERSON, J., RUNNING, S., SAKAGUCHI, K., SLATER, A., STOCKLI, R., WANG, A., YANG, Z.-L. and ZENG, X. Technical Description of version 4.0 of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-478+STR, National Center for Atmospheric Research, Boulder, CO, (2010). 257 pp.

PAL, JS., ELTAHIR, EA, & SMALL, EE. Simulation of regional-scale water and energy budgets- Representation of subgrid cloud and precipitation processes within RegCM. Journal of Geophysical Research, (2000), 105(D24), 29579-29594.

SHAMILA, S. & WALSH, K. J. E. Recent poleward shift of tropical cyclone formation linked to Hadley cell expansion. Nature Climate Change. V. 8, p730–736 (2018). doi: 10.1038/s41558-018-0227-5

WANG, Y., DAVIS, C.A., & HUANG, Y. Dynamics of Lower-Tropospheric Vorticity in Idealized Simulations of Tropical Cyclone Formation. J. Atmos. Sci., 76, 707–727, (2019). doi:10.1175/JAS-D-18-0219.1




DOI: http://dx.doi.org/10.5902/2179460X41593

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Ciência e Natura

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.