Pollutants dispersion simulation in an eulerian model considering eddy diffusivities that depend of the source distance and the wind meandering phenomenon

Viliam Cardoso da Silveira, Gervásio Annes Degrazia, Daniela Buske


The aim of this work is to simulate the pollutants dispersion in an Eulerian model considering the wind meandering phenomenon and eddy diffusivities in terms of source distance. The pollutants dispersion model solve analytically the adcevction-diffusion equation by 3D-GILTT technique. To consider the wind meandering in the dispersion model, we decompose the wind in the u and v
components and we calculate the autocorrelation functions and wind spectra. The results show a good agreement between the observed and simulated concentrations.


Pollutants dispersion; Advection-diffusion equation; 3D-GILTT technique


Anfossi, D., Oettl, D., Degrazia, G., Goulart, A. (2005). An analysis of sonic anemometer observations in low wind speed conditions. Boundary-Layer Meteorology, 114, 179–203.

Bates, D., Watts, D. (1988). Nonlinear Regression Analysis and Its Applications. John Wiley & Sons, New York.

Blackadar, A. (1997). Turbulence and diffusion in the atmosphere: lectures in Environmental Sciences. Springer-Verlag.

Buske, D., Vilhena, M., Moreira, D., Tirabassi, T. (2007). Simulation of pollutant dispersion for low wind conditions in stable and convective planetary boundary layer. Atmospheric Environment, 41, 5496–5501.

Buske, D., Vilhena, M., Tirabassi, T., Bodmann, B. (2012). Air pollution steady-state advection-diffusion equation: the general three-dimensional solution. Journal of Environmental Protection (Print), 3, 1124–1134.

Degrazia, G., Vilhena, M., Moraes, O. (1996). An algebraic expression for the eddy diffusivities in the stable boundary layer: a description of near-source diffusion. Il Nuovo Cimento, 19C, 399–403.

Departamento de computação e matemática (2015). Resolução de sistemas não lineares. URL http://wwwp.fc.unesp.br/~adriana/Numerico/SNLinear.pdf, acessado em 28 set 2015.

Frenkiel, F. (1953). Turbulent diffusion: mean concentration distribution in a flow field of homogeneous turbulence. Advances in Applied Mechanics, 3, 61–107.

Hanna, S. (1989). Confidence limit for air quality models as estimated by bootstrap and jacknife resampling methods. Atmospheric Environment, 23, 1385–1395.

Moreira, D., Vilhena, M., Buske, D., Tirabassi, T. (2009). The state-of-art of the giltt method to simulate pollutant dispersion in the atmosphere. Atmospheric Research, 92, 1–17.

Mortarini, L., Anfossi, D. (2015). Proposal of an empirical velocity spectrum formula in low-wind speed conditions. Quarterly Journal of the Royal Meteorological Society, 141, 85–97.

Mortarini, L., Ferrero, E., Falabino, S., Casteli, S., Richiardone, R., Anfossi, D. (2013). Low-frequency processes and turbulence structure in a perturbed boundary layer. Quarterly Journal of the Royal Meteorological Society, 139, 1059–1072.

Panofsky, H., Dutton, J. (1984). Atmospheric Turbulence. John Wiley & Sons, New York.

Sagendorf, J., Dickson, C. (1974). Diffusion under low wind-speed, inversion conditions. Idaho Falls, Idaho, URL https: //www.arl.noaa.gov/documents/reports/ARL-52.pdf, acesso em 15 jul. 2017.

Sorbjan, Z. (1989). Structure of the atmospheric boundary layer. Prentice Hall, New Jersey.

Szinvelski, C., Degrazia, G., Buligon, L., Moor, L. (2013). Dedução da equação da variança espacial lateral para uma nova formulação da função de autocorrelação lagrangiana. Ciência e Natura, Edição Especial, 187–190.

DOI: http://dx.doi.org/10.5902/2179460X30719


  • There are currently no refbacks.

Copyright (c) 2018 Ciência e Natura

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.