Medições por Covariância de Vórtices Turbulentos dos Fluxos de Calor Latente, Sensível, Momentum e co2 sobre o Reservatório da Usina Hidrelétrica de Curuá-una – PA

Autores

  • Roseilson Souza do Vale UFOPA/INPA/UEA
  • Raoni Aquino Silva de Santana UFOPA/INPA/UEA
  • Júlio Tóta da Silva UFOPA
  • Scott Dennis Miller SUNY
  • Rodrigo Augusto Ferreira de Souza UEA
  • Giórgio Arlan da Silva Picanço UFOPA
  • Ana Carla dos Santos Gomes UFOPA
  • Raphael Pablo Tapajós UFOPA
  • Mário Rodrigues Pedreiro ELETRONORTE

DOI:

https://doi.org/10.5902/2179460X20077

Palavras-chave:

Fluxo. Turbulência. Vento.

Resumo

Medidas dos fluxos de calor latente, sensível, momentum e CO2 foram realizadas no período de 15 a 26 de junho de 2015 sobre o reservatório da Usina Hidrelétrica de Curuá-Una (PA). O sistema de fluxo está localizado a montante do canal principal do reservatório com altura de 3 m acima da superfície da água, instalado em uma estrutura flutuante. A Usina Hidrelétrica de Curuá-Una foi a primeira usina construída na Amazônia e está em funcionamento a quase 40 anos. Durante sua instalação, a vegetação ao redor do canal do rio não foi retirada, o que levou a grandes emissões de gases de efeito estufa para atmosfera. A velocidade do vento foi considerável para manter uma mistura turbulenta mecanicamente. O fluxo de calor latente apresentou correlação significativa com a velocidade do vento (r = 82%). Como consequência do efeito combinado da mistura turbulenta gerada termicamente e mecanicamente os fluxos de calor latente e sensível foram positivos durante todo o período investigado e a camada superficial atmosférica manteve-se instável. O fluxo de CO2 foi dominantemente negativo (84%) caracterizando o reservatório como sumidouro de CO2.

Downloads

Não há dados estatísticos.

Referências

Cole, J. J. and Caraco, N. F (1998). Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol. Oceanogr., 43, p. 647-656, 1998.

Crusius, J. e Wanninkhof, R. (2003). Gas transfer velocities measured at low wind speed over a lake. Limnology and Oceanography, 48, 1010 – 1017.

Fairall, C. W. e Larsen, S. E. (1986). Inertial-Dissipation methods and turbulent fluxes at the air-ocean interface. Boundary-Layer Meteorol. v. 34, p. 287 – 301.

Garrat, J. R. (1972). Studies of turbulence in the surface layer over water (Lough Neagh). Part II. Production and dissipation of velocity and temperature fluctuations. Quart. J. R. Met. Soc. v. 98, p. 642 – 657.

Guérin, F., Abril, G., Richard, S., Burban, B., Reynouard, C., Seyler, P., Delmas, R. (2006). Methane and carbon dioxide emissions from tropical reservoirs: Significance of downstream rivers. J. Geophys. Res. v. 33, L21407.

Guérin, F., Abril, G., Serça, D., Delon, C., Richard, S., Delmas, R. A. e Tremblay, V. L. (2007). Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. Journal of Marine Systems, 66, 161–172.

Herlina, Von. (2005). Gas transfer at the air-water interface in a turbulent flow environment. PhD Tesis. ISSN 1439-4111. Universitätsverlag Karlsruhe.

Junk, J. W., Robertson, B. A., Darwich, A. J., Vieira, I. (1981). Investigações limnológicas e ictiológicas em Curuá-Uma, a primeira represa hidrelétrica na Amazônia Central. Acta Amazônica, v. 11(4), p. 689 – 716.

Kaimal, J. C. e Wyngaard, J. C. (1990). The Kansas and Minnesota experiments. Boundary Layer Meteorology, v. 50, n. 1 - 4, p. 31-47, 1990.

Kemenes, A., Forsberg, B. R., Melack, J. M. (2011). CO2 emissions from a tropical hydroelectric reservoir (Balbina, Brazil). Journal of Geophysical Research, 116, G03004.

Liu, H., Zhang, Y., Liu, S., Jiang, H., Sheng, L. e Williams, Q. L. (2009). Eddy covariance measurements of surface energy budget and evaporation in a cool season over southern open water in Mississipi. J. Geophys. Res. v. 114, D04110.

Macintyre, S., Eugster, W. e Kling, W. (2001). The critical importance of buoyance flux for gas flux across the air-water interface. In: Gas transfer at water surfaces, edited by M. A. Donelan, W. M. Drennan, E. S. Saltzmann and R. Wanninkhof. AGU.

Macintyre, S., Jonsson, A., Jansson, M., Aberg, J., Turney, D. E. e Miller, S. D. (2010). Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake. Geophysical Research Letters, 37, doi:10.1029/2010GL044164.

Marques Filho, E. P., Sá, L. D. A., Karam, H. A., Alvalá, R. C. S., Souza, A., Pereira, M. M. R. (2008). Atmospheric surface layer characteristics of turbulence above the Pantanal wetland regarding the similarity theory. Agric. Forest Meteorol. 148, p. 883-892.

McGillis, W. R., Edson, J. B., Hare, J. E., Fairall, C. W. (2001). Direct covariance air-sea CO2 fluxes. J. Geophys. Res. v. 106, p. 16.729 – 16.745.

McGillis, W. R., Edson, J. B., Zappa, C. J., Ware, J. D., Mckenna, S. P., Terray, E. A., et al. (2004). Air-sea CO2 exchange in the equatorial Pacific. J. Geophys. Res. 109:C08S02.

Monin, A. S. e Yaglom, A. M. (1971). Statistical fluid mechanics: mechanics of turbulence. Massachussets: MIT, p 769.

Polsenaere, P.; Deborde, J.; Detandt, G.; Vidal, L. O.; Pérez, M. A. P.; Marieu, V. and Abril, G. Thermal enhancement of gas transfer velocity of CO2 in an Amazon floodplain lake revealed by eddy covariance measurements. Geophys. Res. Lett., 40, p. 1-7, 2013.

Rasera, M. F. F. L.; Krusche, A. V.; Richey, J. E.; Ballester, M. V. R.; Victório, R. L. Spatial and temporal variability of pCO2 and CO2 efflux in seven amazonian rivers. Biogeochemistry, 116, p. 241-259, 2013.

Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M. e Hess, L. L. (2002). Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Science, 416, 617 – 620.

Rutgersson, A. e Smedman, A. (2010). Enhanced air-sea CO2 transfer due to water-side convection. Journal of Marine Systems, v. 80, p. 125 – 134.

Stull, R. B. (1988). An introduction to boundary layer meteorology. Dordrecht: Kluwer.

Wanninkhof, R. (1992). Relationship between gas exchange and wind speed over the ocean. J. Geophys. Res., 97, p. 7373 – 7381.

Webb, E. K., Pearman, G. I. e Leuning, R. (1980). Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society, 106, 85 – 100.

Zappa, C. J., McGillis, W. R., Raymond, P. A., Edson, J. B., Hintsa, E. J., Zemmelink, H. J., Dacey, J. W., Ho, D. T. (2007). Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems. J. Geophys. Res. v. 34, L10601.

Downloads

Publicado

2016-07-20

Como Citar

Vale, R. S. do, Santana, R. A. S. de, Silva, J. T. da, Miller, S. D., Souza, R. A. F. de, Picanço, G. A. da S., Gomes, A. C. dos S., Tapajós, R. P., & Pedreiro, M. R. (2016). Medições por Covariância de Vórtices Turbulentos dos Fluxos de Calor Latente, Sensível, Momentum e co2 sobre o Reservatório da Usina Hidrelétrica de Curuá-una – PA. Ciência E Natura, 38, 15–20. https://doi.org/10.5902/2179460X20077

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 > >> 

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.