• Roseilson Souza do Vale UFOPA/INPA/UEA
  • Raoni Aquino Silva de Santana UFOPA/INPA/UEA
  • Júlio Tóta da Silva UFOPA
  • Scott Dennis Miller SUNY
  • Rodrigo Augusto Ferreira de Souza UEA
  • Giórgio Arlan da Silva Picanço UFOPA
  • Ana Carla dos Santos Gomes UFOPA
  • Raphael Pablo Tapajós UFOPA
  • Mário Rodrigues Pedreiro ELETRONORTE




Flux. Turbulence. Wind.


Flux measurements of latent heat, sensible heat, momentum, and CO2 were performed from 15 to 26 June 2015 on the reservoir of the hydroelectric plant Curuá-Una (PA). The flux system is located upstream of the main channel of the reservoir and installed at 3 m above the water surface on a floating structure. The hydroelectric plant Curuá-Una was the first plant built in the Amazonia and it is in operation for almost 40 years. During installation, the vegetation around the river channel was not removed, which led to large emissions of greenhouse gases into the atmosphere. The wind speed was important to maintain turbulent mixing mechanically. Latent heat flux showed significant correlation with the wind velocity (r = 82%). As a result of the combined effect of turbulent mixing generated thermally and mechanically, the latent and sensible heat fluxes were positive throughout the investigation period and the atmospheric surface layer remained unstable. The CO2 flow was predominantly negative (84%), characterizing the reservoir as a CO2 sink.


Download data is not yet available.


Cole, J. J. and Caraco, N. F (1998). Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol. Oceanogr., 43, p. 647-656, 1998.

Crusius, J. e Wanninkhof, R. (2003). Gas transfer velocities measured at low wind speed over a lake. Limnology and Oceanography, 48, 1010 – 1017.

Fairall, C. W. e Larsen, S. E. (1986). Inertial-Dissipation methods and turbulent fluxes at the air-ocean interface. Boundary-Layer Meteorol. v. 34, p. 287 – 301.

Garrat, J. R. (1972). Studies of turbulence in the surface layer over water (Lough Neagh). Part II. Production and dissipation of velocity and temperature fluctuations. Quart. J. R. Met. Soc. v. 98, p. 642 – 657.

Guérin, F., Abril, G., Richard, S., Burban, B., Reynouard, C., Seyler, P., Delmas, R. (2006). Methane and carbon dioxide emissions from tropical reservoirs: Significance of downstream rivers. J. Geophys. Res. v. 33, L21407.

Guérin, F., Abril, G., Serça, D., Delon, C., Richard, S., Delmas, R. A. e Tremblay, V. L. (2007). Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. Journal of Marine Systems, 66, 161–172.

Herlina, Von. (2005). Gas transfer at the air-water interface in a turbulent flow environment. PhD Tesis. ISSN 1439-4111. Universitätsverlag Karlsruhe.

Junk, J. W., Robertson, B. A., Darwich, A. J., Vieira, I. (1981). Investigações limnológicas e ictiológicas em Curuá-Uma, a primeira represa hidrelétrica na Amazônia Central. Acta Amazônica, v. 11(4), p. 689 – 716.

Kaimal, J. C. e Wyngaard, J. C. (1990). The Kansas and Minnesota experiments. Boundary Layer Meteorology, v. 50, n. 1 - 4, p. 31-47, 1990.

Kemenes, A., Forsberg, B. R., Melack, J. M. (2011). CO2 emissions from a tropical hydroelectric reservoir (Balbina, Brazil). Journal of Geophysical Research, 116, G03004.

Liu, H., Zhang, Y., Liu, S., Jiang, H., Sheng, L. e Williams, Q. L. (2009). Eddy covariance measurements of surface energy budget and evaporation in a cool season over southern open water in Mississipi. J. Geophys. Res. v. 114, D04110.

Macintyre, S., Eugster, W. e Kling, W. (2001). The critical importance of buoyance flux for gas flux across the air-water interface. In: Gas transfer at water surfaces, edited by M. A. Donelan, W. M. Drennan, E. S. Saltzmann and R. Wanninkhof. AGU.

Macintyre, S., Jonsson, A., Jansson, M., Aberg, J., Turney, D. E. e Miller, S. D. (2010). Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake. Geophysical Research Letters, 37, doi:10.1029/2010GL044164.

Marques Filho, E. P., Sá, L. D. A., Karam, H. A., Alvalá, R. C. S., Souza, A., Pereira, M. M. R. (2008). Atmospheric surface layer characteristics of turbulence above the Pantanal wetland regarding the similarity theory. Agric. Forest Meteorol. 148, p. 883-892.

McGillis, W. R., Edson, J. B., Hare, J. E., Fairall, C. W. (2001). Direct covariance air-sea CO2 fluxes. J. Geophys. Res. v. 106, p. 16.729 – 16.745.

McGillis, W. R., Edson, J. B., Zappa, C. J., Ware, J. D., Mckenna, S. P., Terray, E. A., et al. (2004). Air-sea CO2 exchange in the equatorial Pacific. J. Geophys. Res. 109:C08S02.

Monin, A. S. e Yaglom, A. M. (1971). Statistical fluid mechanics: mechanics of turbulence. Massachussets: MIT, p 769.

Polsenaere, P.; Deborde, J.; Detandt, G.; Vidal, L. O.; Pérez, M. A. P.; Marieu, V. and Abril, G. Thermal enhancement of gas transfer velocity of CO2 in an Amazon floodplain lake revealed by eddy covariance measurements. Geophys. Res. Lett., 40, p. 1-7, 2013.

Rasera, M. F. F. L.; Krusche, A. V.; Richey, J. E.; Ballester, M. V. R.; Victório, R. L. Spatial and temporal variability of pCO2 and CO2 efflux in seven amazonian rivers. Biogeochemistry, 116, p. 241-259, 2013.

Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M. e Hess, L. L. (2002). Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Science, 416, 617 – 620.

Rutgersson, A. e Smedman, A. (2010). Enhanced air-sea CO2 transfer due to water-side convection. Journal of Marine Systems, v. 80, p. 125 – 134.

Stull, R. B. (1988). An introduction to boundary layer meteorology. Dordrecht: Kluwer.

Wanninkhof, R. (1992). Relationship between gas exchange and wind speed over the ocean. J. Geophys. Res., 97, p. 7373 – 7381.

Webb, E. K., Pearman, G. I. e Leuning, R. (1980). Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society, 106, 85 – 100.

Zappa, C. J., McGillis, W. R., Raymond, P. A., Edson, J. B., Hintsa, E. J., Zemmelink, H. J., Dacey, J. W., Ho, D. T. (2007). Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems. J. Geophys. Res. v. 34, L10601.



How to Cite

Vale, R. S. do, Santana, R. A. S. de, Silva, J. T. da, Miller, S. D., Souza, R. A. F. de, Picanço, G. A. da S., Gomes, A. C. dos S., Tapajós, R. P., & Pedreiro, M. R. (2016). EDDY COVARIANCE MEASUREMENTS OF LATENT HEAT, SENSIBLE HEAT, MOMENTUM AND CO2 FLUXES ON THE RESERVOIR OF THE HYDROELECTRIC PLANT CURUÁ-UNA – PA. Ciência E Natura, 38, 15–20. https://doi.org/10.5902/2179460X20077

Most read articles by the same author(s)

<< < 1 2 

Similar Articles

You may also start an advanced similarity search for this article.