Ana Carla dos Santos Gomes, Gabriel Brito Costa, Roseilson Souza do Vale, Raoni Aquino Silva de Santana, Sarah Suely Alves Batalha, Júlio Tóta da Silva, David Roy Fitzjarrald


The aim of this study was to attract associations between hospitalizations for respiratory diseases and micrometeorological index in the Santarém city, located in the West Pará region in the year 2010. It was used numbers of children hospitalizations with 0-4 years old and weather data variables (relative humidity, air temperature, precipitation, atmospheric pressure). Was calculated the Micrometeorological index, through principal component analysis, were each principal component is a linear combination of all the original variables, independent of each other and estimated in proposal to retain the maximum total variation information contained in the data; To detect the association we used generalized estimating equations that are used when you want to fit models for longitudinal data. The results suggest that the greatest number of admissions occurred in June coinciding with the transition period between the rainy and dry seasons. Statistically significant associations were observed, noting that the relative risk of 10% was captured for the increase in hospitalizations due to synergy of meteorological variables. This is expected to assist in the planning of public policies and environmental health.


Principal Component Analysis. Microclimate. Amazon. Health.


Agresti, A. (1996). An Introduction to categorical data analysis. John Wiley and Sons. Inc. New York.

Bakonyi, C. S. M., Danni-Oliveira, M.I., Martins, L. C. (2004). Poluição atmosférica e doenças respiratórias em crianças na cidade de Curitiba, PR. Rev. Saúde Pública, v.38, n. 5, p.695-700. out.

Chagas, C. Marques. F. (2007). Novo índice avalia relações entre clima e saúde. In: Revista Manguinhos. Clima e Saúde – p. 18-23.

Duarte, A. F., Marcarenhas, M. D. M. (2007). Manifestações do bioclima do acre sobre a saúde humana no contexto socioeconômico da Amazônia. Amazônia: Ci. & Desenv., Belém, v. 3, n. 5, jul./dez.

Gandu, A. W., Cohen, J. C. P., Souza, J. R. S de. (2004). Simulations of deforestation in Eastern Amazon using a higher-resolution model. Theoretical and Applied Climatology, 78: 123-135

Gomes, A. C. dos S., Lucio, P. S., Spyrides, M. H. C. (2013). Influence of pollution from particulate matter at the hospitalizations of asthmatic children in area of Great São Paulo. Revista Brasileira de Geografia Física, Vol. 6, No 4 (2013)

Gouveia, N., Bremner, S.A., Novaes, H. M., (2004). Association between ambient air pollution and birth weight in São Paulo, Brazil. J Epidemiol Community Health; 58:11-7.

Laird, N. M., Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, v.38:963-974.

Lewis, S. L., P. M. Brando. O. L., Phillips. G. M. F., Van Der Heijden. and Nepstad, D. (2011). The 2010 Amazon drought. Science. 331. 554. doi:10.1126/science.1200807.

Liang, K. Y., Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika. 73:13-22.

Kellogg, D. L. (2006). In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges. J Appl Physiol. 100:1709–18

Marengo, J. A., J. Tomasella. L. M., Alves. W. R., Soares. and D. A. Rodriguez (2011). The drought of 2010 in the context of historical droughts in the Amazon region. Geophys. Res. Lett.. 38. L12703. doi:10.1029/2011GL047436.

Merril, R. M. (ed). (2008). Environmental epidemiology: principles and methods. Massachusetts: Jones and Bartlett Publishers.

R Development Core Team (2009). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. Austria.

Rosa, A. M., Ignotti, E., Hacon, S.S., Castro, H.A. (2008). Análise das internações por doenças respiratórias em Tangará da Serra - Amazônia Brasileira. J Bras Pneumol. 34:575-82.

Wedderburn, RWM. 1974. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika. 61:439-447.

Zeger, S. L., Liang, K. Y. (1986). Longitudinal data analysis for discrete and continuous outcomes. Biometrics. 42:1(3)121-130.

DOI: https://doi.org/10.5902/2179460X19691

Copyright (c) 2016

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.