EDDY COVARIANCE MEASUREMENTS OF LATENT HEAT, SENSIBLE HEAT, MOMENTUM AND CO2 FLUXES ON THE RESERVOIR OF THE HYDROELECTRIC PLANT CURUÁ-UNA – PA
DOI:
https://doi.org/10.5902/2179460X20077Keywords:
Flux. Turbulence. Wind.Abstract
Flux measurements of latent heat, sensible heat, momentum, and CO2 were performed from 15 to 26 June 2015 on the reservoir of the hydroelectric plant Curuá-Una (PA). The flux system is located upstream of the main channel of the reservoir and installed at 3 m above the water surface on a floating structure. The hydroelectric plant Curuá-Una was the first plant built in the Amazonia and it is in operation for almost 40 years. During installation, the vegetation around the river channel was not removed, which led to large emissions of greenhouse gases into the atmosphere. The wind speed was important to maintain turbulent mixing mechanically. Latent heat flux showed significant correlation with the wind velocity (r = 82%). As a result of the combined effect of turbulent mixing generated thermally and mechanically, the latent and sensible heat fluxes were positive throughout the investigation period and the atmospheric surface layer remained unstable. The CO2 flow was predominantly negative (84%), characterizing the reservoir as a CO2 sink.Downloads
References
Cole, J. J. and Caraco, N. F (1998). Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol. Oceanogr., 43, p. 647-656, 1998.
Crusius, J. e Wanninkhof, R. (2003). Gas transfer velocities measured at low wind speed over a lake. Limnology and Oceanography, 48, 1010 – 1017.
Fairall, C. W. e Larsen, S. E. (1986). Inertial-Dissipation methods and turbulent fluxes at the air-ocean interface. Boundary-Layer Meteorol. v. 34, p. 287 – 301.
Garrat, J. R. (1972). Studies of turbulence in the surface layer over water (Lough Neagh). Part II. Production and dissipation of velocity and temperature fluctuations. Quart. J. R. Met. Soc. v. 98, p. 642 – 657.
Guérin, F., Abril, G., Richard, S., Burban, B., Reynouard, C., Seyler, P., Delmas, R. (2006). Methane and carbon dioxide emissions from tropical reservoirs: Significance of downstream rivers. J. Geophys. Res. v. 33, L21407.
Guérin, F., Abril, G., Serça, D., Delon, C., Richard, S., Delmas, R. A. e Tremblay, V. L. (2007). Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. Journal of Marine Systems, 66, 161–172.
Herlina, Von. (2005). Gas transfer at the air-water interface in a turbulent flow environment. PhD Tesis. ISSN 1439-4111. Universitätsverlag Karlsruhe.
Junk, J. W., Robertson, B. A., Darwich, A. J., Vieira, I. (1981). Investigações limnológicas e ictiológicas em Curuá-Uma, a primeira represa hidrelétrica na Amazônia Central. Acta Amazônica, v. 11(4), p. 689 – 716.
Kaimal, J. C. e Wyngaard, J. C. (1990). The Kansas and Minnesota experiments. Boundary Layer Meteorology, v. 50, n. 1 - 4, p. 31-47, 1990.
Kemenes, A., Forsberg, B. R., Melack, J. M. (2011). CO2 emissions from a tropical hydroelectric reservoir (Balbina, Brazil). Journal of Geophysical Research, 116, G03004.
Liu, H., Zhang, Y., Liu, S., Jiang, H., Sheng, L. e Williams, Q. L. (2009). Eddy covariance measurements of surface energy budget and evaporation in a cool season over southern open water in Mississipi. J. Geophys. Res. v. 114, D04110.
Macintyre, S., Eugster, W. e Kling, W. (2001). The critical importance of buoyance flux for gas flux across the air-water interface. In: Gas transfer at water surfaces, edited by M. A. Donelan, W. M. Drennan, E. S. Saltzmann and R. Wanninkhof. AGU.
Macintyre, S., Jonsson, A., Jansson, M., Aberg, J., Turney, D. E. e Miller, S. D. (2010). Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake. Geophysical Research Letters, 37, doi:10.1029/2010GL044164.
Marques Filho, E. P., Sá, L. D. A., Karam, H. A., Alvalá, R. C. S., Souza, A., Pereira, M. M. R. (2008). Atmospheric surface layer characteristics of turbulence above the Pantanal wetland regarding the similarity theory. Agric. Forest Meteorol. 148, p. 883-892.
McGillis, W. R., Edson, J. B., Hare, J. E., Fairall, C. W. (2001). Direct covariance air-sea CO2 fluxes. J. Geophys. Res. v. 106, p. 16.729 – 16.745.
McGillis, W. R., Edson, J. B., Zappa, C. J., Ware, J. D., Mckenna, S. P., Terray, E. A., et al. (2004). Air-sea CO2 exchange in the equatorial Pacific. J. Geophys. Res. 109:C08S02.
Monin, A. S. e Yaglom, A. M. (1971). Statistical fluid mechanics: mechanics of turbulence. Massachussets: MIT, p 769.
Polsenaere, P.; Deborde, J.; Detandt, G.; Vidal, L. O.; Pérez, M. A. P.; Marieu, V. and Abril, G. Thermal enhancement of gas transfer velocity of CO2 in an Amazon floodplain lake revealed by eddy covariance measurements. Geophys. Res. Lett., 40, p. 1-7, 2013.
Rasera, M. F. F. L.; Krusche, A. V.; Richey, J. E.; Ballester, M. V. R.; Victório, R. L. Spatial and temporal variability of pCO2 and CO2 efflux in seven amazonian rivers. Biogeochemistry, 116, p. 241-259, 2013.
Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M. e Hess, L. L. (2002). Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Science, 416, 617 – 620.
Rutgersson, A. e Smedman, A. (2010). Enhanced air-sea CO2 transfer due to water-side convection. Journal of Marine Systems, v. 80, p. 125 – 134.
Stull, R. B. (1988). An introduction to boundary layer meteorology. Dordrecht: Kluwer.
Wanninkhof, R. (1992). Relationship between gas exchange and wind speed over the ocean. J. Geophys. Res., 97, p. 7373 – 7381.
Webb, E. K., Pearman, G. I. e Leuning, R. (1980). Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society, 106, 85 – 100.
Zappa, C. J., McGillis, W. R., Raymond, P. A., Edson, J. B., Hintsa, E. J., Zemmelink, H. J., Dacey, J. W., Ho, D. T. (2007). Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems. J. Geophys. Res. v. 34, L10601.
Downloads
Published
How to Cite
Issue
Section
License
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.