Materiais de Revestimento Utilizados na Microencapsulação de Probióticos

Autores

  • Andressa Ribas Barreto Departamento de Tecnologia e Ciência dos Alimentos -UFSM
  • Luis Guillermo Ramírez Mérida Departamento de Tecnologia e Ciência dos Alimentos -UFSM
  • Mariana de Araújo Etchepare Departamento de Tecnologia e Ciência dos Alimentos -UFSM
  • Eduardo Jacob-Lopes Departamento de Teacnologia e Ciência dos Alimentos -UFSM
  • Cristiano Ragagnin de Menezes Universidade Federal de Santa Maria

DOI:

https://doi.org/10.5902/2179460X19747

Palavras-chave:

Agentes encapsulantes. Bifidobacterium. Lactobacillus. Microencapsulação.

Resumo

Os microrganismos probióticos conferem inúmeros benefícios para a saúde de quem os consome, porém, há vários fatores que podem afetar a sua viabilidade. A partir disso, a microencapsulação tem como objetivo melhorar a preservação de microrganismos probióticos que podem ser expostos a condições adversas. Um dos fatores que podem contribuir para a manutenção da viabilidade, é o agente encapsulante utilizado em culturas probióticas, são elas: alginato, proteína de soro de leite, pectina, Proteína de Isolada de Soja (PSI), carragena, quitosana, goma arábica, maltodextrina e amido. Neste contexto, o objetivo deste trabalho é fornecer uma revisão sobre os agentes encapsulantes mais utilizados na microencapsulação de culturas probióticas.

Downloads

Não há dados estatísticos.

Biografia do Autor

Andressa Ribas Barreto, Departamento de Tecnologia e Ciência dos Alimentos -UFSM

Graduanda em Tecnologia de Alimentos -UFSM

Luis Guillermo Ramírez Mérida, Departamento de Tecnologia e Ciência dos Alimentos -UFSM

Mestre em Biotecnologia Alimentária, Centro de Biotecnología Aplicada, Departamento de Biología, Universidad de Carabobo - UC, Valência, Venezuela

Mariana de Araújo Etchepare, Departamento de Tecnologia e Ciência dos Alimentos -UFSM

Doutoranda em Ciência e Tecnologia de Alimentos -UFSM

Eduardo Jacob-Lopes, Departamento de Teacnologia e Ciência dos Alimentos -UFSM

Doutorado em Engenharia Química -FEQ/UNICAMP

Professor Departamento de Tecnologia e Ciência dos Alimentos -UFSM

Cristiano Ragagnin de Menezes, Universidade Federal de Santa Maria

Doutorado em Ciência de Alimentos -FEA-UNICAMP

Prof. Adjunto DTCA UFSM

Biotecnologia e Microestrutura de Alimentos

Referências

Amici, E.; Tetradis-Meris, G.; Torres, P.C.; Jousse, F. (2008). Alginate gelation in microfluidic channels. Food Hydrocolloids, 22, 97-104.

Anal, A., Singh, H. (2007). Recent advances in microencapsulation of probiotic for industrial applications and targeted delivery. Food Science & Technology, 18, 240-251.

Arzate-Vázquez, I.; Chanona-Pérez, J.; Calderón-Domínguez, G.; Terres-Rojas, E.; Garubay-Febles, V.; Martínez-Rivas, A.; Gutiérrez-López, G. (2012). Microstructural characterization of chitosan and alginate films by microscopy techniques and texture image analysis. Carbohydrate Polymers, 142, 185-189.

Baldasso, C.; Barros, T. C.; Tessaro, I. C. (2011). Concentration and purification of whey proteins by ultrafiltration. Desalination, 278(1-3), 381-386.

Bhandari, B.R.; Dumoulin, E.D.; Richard, H.M.J.; Noleau, I. & Lebert, A.M.(1992). Flavor encapsulation by spray drying: application to citral and linalyl acetate. Journal of Food Science, 57(1), p.217-221.

Björses, K.; Faxälv, L.; Montan, C.; Wildt-Persson, K.; Fyhr, P.; Holst, J.; Lindahl, T. L.(2011). In vitro and in vivo evaluation of chemically modified degradable starch microspheres for topical haemostasis. Acta Biomaterialia, 7, 2558– 2565.

Bobbio, F.O.; Bobbio, P.A. (1992). Introdução à química de alimentos. 2a edição. São Paulo: Livraria Varela.

Braccini, I.; Pérez S. (2001). Molecular basis of Ca2+-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromolecules, 2(4), 1089-1096.

Brasil. Agência Nacional de Vigilância Sanitária. Anvisa, Resolução N° 18. Diário Oficial [Da] República Federativa do Brasil, Brasília, Abril de 1999. Anvisa. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Ix-Lista de Alegações de Propriedade Funcional Aprovadas. Diário Oficial [da] República Federativa do Brasil, Brasília, Julho de 2008.

Brusch, G.B.; Záchia, A.M.A. (2011). Effect of microencapsulation on survival of Lactobacillus plantarum in simulated gastrointestinal conditions, refrigeration and yogurt. Journal of Food Engineering, 103, 123-128.

Burgain, J.; Gaiani, C.; Linder, M.; Scher, J. (2011). Encapsulation of probiotic living cells: from laboratory scale to industrial applications. Journal of Food Engineering, 104, 467– 483.

Camilo, K.F.B. (2007). Complexo pectina/caseína: aspectos básicos e aplicados. Tese, USP, Ribeirão Preto, São Paulo, 166.

Castro-Cislaghi, F. P.; Silva, C. R. E.; Fritzen-Freire, C. B.; Lorenz, J. G.; Sant’Anna, E. S. (2012). Bifidobacterium Bb-12 microencapsulated by spray drying with whey: survival under simulated gastrointestinal conditions, tolerance to nacl, and viability during storage. Journal of Food Engineering, 113, 186-193.

Chan, E. S.; Wong, S. L.; Lee, P. P.; Lee, J. S.; Ti, T. B.; Zhang, Z.; Poncelet, D.; Ravindra, P.; Phan, S. H.; Yim, Z. H.(2011). Effects of starch filler on the physical properties of lyophilized calcium–alginate beads and the viability of encapsulated cells. Carbohydrate Polymers, 83, 225-232.

Chen, L.; Remondetto, G. E.; Subirade, M. (2006). Food protein-based materials as nutraceutical delivery systems. Trends In Food Science & Technology, 17, 272–283.

Cook, M.T. (2012). Microencapsulation of probiotics for gastrointestinal delivery. Journal of Controlled Release, 162, 56-67.

De Ruiter, G. A.; Rudolph, B. (1997). Carrageenan biotechnology. Trends in Food Science & Technology, 8(12), 389-395.

Dinakar, P.; Mistry, V.V. (1994). Growth and viability of Bifidobacterium bifidum in cheddar cheese. Journal of Dairy Science, 77(10), 2854-2864.

Dodande, V.; Vilivalan, D. V. (1998). Pharmaceutical Aplicattions of chitosan. Pstt. 1(6).

Doherty, S. B., Gee, V. L., Ross, R. P., Stanton, C., Fitzgerald, G. F., & Brodkorb, A. (2011). Development and characterisation of whey protein micro-beads as potential matrices for probiotic protection. Food Hydrocolloids, 25, 1604–1617.

E. Shi, L.; Li, Z.H; Zhang, Z.L.; Zhang, T.T.; Yu, W.M.; Zhou, M.L.; Tang, Z.X. (2013). Encapsulation of lactobacillus bulgaricus in carrageenan-locust bean gum coated milk microspheres with double layer structure. LWT- Food Science and Technology, 54, 147-151.

Elnaggar, Y.S.R.; El-Massik, A.M.; Abdallah O.Y. Ebian, A.E.R. (2010). Maltodextrin: a novel excipient used in sugar-based orally disintegrating tablets and phase transition process. AAPSPharmSciTech, 11, 645-651.

FAO/WHO (2001). Evaluation of health and nutritional properties of powder milk and live lactic acid bacteria. Food and Agriculture Organization of the United Nations and World Health Organization Expert Consultation Report (http://www.who.int/foodsafety/publications/fs_management/en/probiotics.pdf.

Fennema, O.(1996). Food Chemistry. New York: Marcel Dekker Inc, 1069.

Filho, S.P.C.; Cardoso, M.B.; Signini, R. (2007). Revista de Processos Químicos, 2, 9.

Fooks, L.J.; Fuller, R.; Gibson, G.R. (1999). Prebiotics and human gut microbiology. International Dairy Journal, .9, 53-61.

García-Cruz, C. H.; Foggetti, U.; da SILVA, A. N. (2008). Alginato bacteriano: aspectos tecnológicos, características e produção. Química Nova, 31(7), 1800-1806.

Gebelein, C.G.; Carraher, C.E.Jr. (1994). Biotechnology and bioactive polymers. First edition. Plenum Press. Florida, EE.UU, 342 p.

George, M.; Abraham, E.T. (2006). Polyionic hydrocolloids for the intestianal delivery of the protein drugs: alginate end chitosan – a review. Journal of Controlled Release, 114, 1-14.

Gerez, C. L.; Font De Valdez, G.; Gigante, M. L.; Grosso, C. R. F. (2012). Whey protein coating bead improves the survival of the probiotic lactobacillus rhammnous crl 1505 to low pH. Letters in Applied Microbiology, 54, 552–556.

Gibbs, S. (1999). Encapsulation in the food industry: a review. International Journal of Food Sciences And Nutrition, 50(3), 213-224.

Gombotz, W.R.; Wee, S.F. (1998). Protein release from alginate matrices. Advanced Drug Delivery Reviews, 31(3), 267–285.

Harris, R.; Lecumberri, E.; Mateos-Aparicio, I.; Mengíbar, M.; Heras, A. (2011). Chitosan nanoparticles and microspheres for the ancapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohydrate Polymers, 84, 803-806.

Huq, T.; Khan, A.; Khan, R. A.; Riedl, B.; Lacroix, M. (2013). Encapsulation of probiotic bacteria in biopolymeric system. Critical Reviews in Food Science And Nutrition, 53(9), 909-916.

Imeson, A. P. (2000) Carrageenan. In: Handbook of hydrocolloids. Phillips, G. O.; Williams, P. A. (Eds.), Crc Press: Boca Raton.

Jafari, S. M.; Assadpoor, E.; He, Y.; Bhandari, B.(2008). Encapsulation efficiency of food flavours and oils during spray drying. Drying Technology, 26(7), 816-835.

Katouzi, S.; Majd, A.; Fallahian, F.; Bernard, F. (2011). Encapsulation of shoot tips in alginate beads containing salicylic acid for cold preservation and plant regeneration in sunflower (Helianthus annuus L.) Australian Journal of Crop Science, 5(11), 1469-1474.

Kenyon, M.M. & Anderson, R.J. (1998).Maltodextrins and low-dextrose-equivalence with syrup solids. In: Flavor encapsulation (RISCH & REINECCIUS), 7-11, ACS Symposium series no 370, American Chemical Society.

Krasaekoopt, W.; Bhandari, B.; Deeth, H.C. (2004). The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. International Dairy Journal, 14, 737-743.

Lapsiri, W.; Bhandari, B.; Wanchaitanawong, P. (2012). Viability of Lactobacillus plantarum TISTR 2075 in different protectants during spray drying and storage. Drying Technology, 30(13), 1407-1412.

Li, X.Y.; Jin, L.J.; Uzonna, J.E.; Li, S.Y.; Liu, J.J.; Li, H.Q.; Lu, Y.N.; Zhen, Y.H.; Xu, Y.P. (2009). Chitosan-alginate microcapsules for oral delivery of egg yolk immunoglobulin (IgY): In vivo evaluation in a pig model of Enteric colibacillosis. Veterinary Immunology and Immunopathology, 4(129), 132-136.

Menezes, C. R. Barin, J.S.; Chicoski, A.L.; Zepka, L.Q.; Jacob-Lopes. E.; Fries, L.M.M.; Terra, N.N. (2013). Microencapsulação de probióticos: avanços e perspectivas. Ciência Rural, 43(7), 1309-1316.

Menezes, C.R.; Durrant, L.R. (2008). Xilooligossacarídeos: Produção, aplicações e efeitos na saúde humana. Ciência Rural, 38, 587-592.

Mokarran, R.R.; Mortazavi, S.A.; Najafi, M.B.H.; Shahidi, F. (2009). The influence of potencial probiotic bactéria in simulted gastric and intestinal juice. Food Research International, (42), 1040-1045.

Morais, A.A.C.; Silva, A.L. (1996). Soja: Suas aplicações. Rio De Janeiro: Editora Médica E Científica, 259.

Ortiz, S.E.M.O.; Mauri, A.; Monterrey-Quintero, E.S.; Trindade, M.A.; Santana, A.S.; Favaro-Trindade, C.S. (2009). Production and properties of casein microencapsulated by spray drying with soybean protein isolate. LWT- Food Science And Technology, 42, 919-923.

Osman, M. E.; Williams, P. A.; Menzies, A. R.; Phillips, G. O. (1993). Characterization of commercial samples of gum Arabic. J Journal of Agricultural and Food Chemistry, .41, 71-77.

Pasin, B. L.; Azón, C. G.; Garriga, A. M. (2012). Microencapsulación com alginato en alimentos. Técnicas y aplicaciones. Revista Venezolana de Ciencia y Tecnología De Alimentos, 3(1), 130-151.

Pereira, C. D.; Diaz, O.; Cobos, A. (2002). Valorization of by-products from ovine cheese manufacture: clarification by thermocalcic precipitation/microfiltration before ultrafiltration. International Dairy Journal, 12(9), 773-783.

Pesic, M. B.; Barac, M. B.; Vrvic, M. M.; Ristic, N. M.; Macej, O. D.; Stanojevic, S. P.; Kostic, A. Z. (2011). The distributions of major whey proteins in acid wheys obtained from caprine/bovine and ovine/bovine milk mixtures. International Dairy Journal, 21(10), 831-838.

Picot, A.; Lacroix, C. (2004). Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. International Dairy Journal, 14, 505-515.

Poncelet, D. (2001). Production of alginate beads by emulsification/internal gelation. Annals of the New York Academy of Sciences, 944, 74-82.

Puupponen-Pimiä, R.; Aura, A.M.; Oksmancaldentey, K.M.; Myllärinen, P.; Saarela, M.; Mattila-Sanholm, T.; Poutanen, K. (2002). Development of functional ingredients for gut health. Trends in Food Science & Technology, Amsterdam, 13, 3-11.

Qi, Z.H. Xu, A. (1999). Starch-based ingredients for flavor encapsulation. Cereal Foods World, 44, 460-465.

Ralet, M.-C.; Dronnet, V.; Buchholt, H. C.; Thibault, J.-F. (2001). Enzymatically and chemically de-esterified lime pectins: characterisation, polyelectrolyte behaviour and calcium binding properties. Carbohydrate Research, 336, (2), 117-125.

Reineccius, G. A. (1988) Spray-drying of food flavors. In: RISCH, S. J.; REINECCIUS, G. A. Flavor encapsulation. Washington, DC: ACS, 55-66.

Reineccius, G.A.(1991).Carbohydrates for flavor encapsulation. Food Technology, 144-146.

Rosenberg, M.; Kopelman, I.J. & Talmon, Y.(1990). Factors affecting retention in spray-drying microencapsulation of volatile materials. J. Agric. Food Chem., 36, 1288-1294.

Sarkar, S. (2010). Approaches for enhancing the viability of probiotics: a review. British Food Journal, 112, (4), 329-349.

Savini, M.; Cecchini, C.; Verdenelli, M.C.; Silvi, S.; Orpianesi, C.; Cresci, A. (2010). Pilot-scale production and viability analysis of freeze-dried probiotic bacteria using different protective agents. Nutrients, 2, 330-339.

Shah, N. P., Lankaputhra, W. E. V., Britz, M. L., & Kyle, W. S. A. (1995). Survival of Lactobacillus acidophilus and Bifidobacterium bifidum in commercial yoghurt during refrigerated storage. International Dairy Journal, 5, 515–521.

Shahidi, F. & Han, X.Q.(1993). Encapsulation of Food Ingredients. Critical Reviews in Food Science and Nutrition, 33(6), 501-547.

Simsek-Ege, Fa; Gillian M. Bond, Gm; Stringer, J. Polyelectrolye complex formation between alginate and chitosan as a function of pH. Journal of Applied Polymer Science, 88, 346-351.

Smithers, G. W. (2008). Whey and whey proteins-from 'gutter-to-gold'. International Dairy Journal, 18(7), 695-704.

Socol, C.R.; Vandenberghe, L.P.S.; Spier, M.R.; Medeiros, A.B.P.; Yamaguishi, C.T.; Lindner, J.D.; Pandey, A.; Soccol, V.T. (2010). The potential of probiotics. Food Technology and Biotechnology, 48(4), 413-434.

Sohail, A.; Turner, N.S.; Coombes, A.; Bostrom, T.; Bhandari, B. (2011). Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging aerosols method. International Journal of Food Microbiology, 145, 162-168.

Solanki, H. K.; Pawar, D. D.; Dushyant, A. S.; Prajapati, V. D.; Jani, G. K.; Mulla, A. M.; Thakar, P.M. (2013). Development of microencapsulation delivery system for long-term preservation of probiotics as biotherapeutics agent. BioMed Research International, 1–21.

Stadnik, M. J.; de Freitas, M. B. (2014). Algal polysaccharides as source of plant resistance inducers. Tropical Plant Pathology, 39(2), 111-118.

Thakur, B. R.; Singh, R. K.; Handa, A. K. (1997). Chemistry and uses of pectin - a review. Critical Reviews in Food Science and Nutrition, 37(1), 47-73.

Wang, Q.; Hu, X.; Du, Y.; Kennedy, J.(2010). Alginate/starch blend fibers and their properties for drug controlled release. Carbohydrate Polymers, 82, 842-847.

Downloads

Publicado

2015-12-15

Como Citar

Barreto, A. R., Mérida, L. G. R., Etchepare, M. de A., Jacob-Lopes, E., & Menezes, C. R. de. (2015). Materiais de Revestimento Utilizados na Microencapsulação de Probióticos. Ciência E Natura, 37, 164–174. https://doi.org/10.5902/2179460X19747

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 > >>