MICROENCAPSULATION OF PROBIOTICS BY EXTRUSION METHOD ASSOCIATED WITH ELECTROSTATIC INTERACTIONS

Mariana Araújo Etchepare, Maria Fernanda da Silveira Cáceres de Menezes, Andressa Ribas Barreto, Carlos Pasqualin Cavalheiro, Cristiano Ragagnin de Menezes

Abstract


Probiotics are live microorganisms that when consumed in adeequadas amounts confer a number of benefits for the health of the host due to improved intestinal microflora. Bacteria of the genus Lactobacillus, Bifidobacterium, and Bacillus have been widely studied and are added to various food types. However, the physicochemical stability and bioavailability of these bacteria have represented a major challenge for the food industry, especially in non-refrigerated food products. The microencapsulation helps to improve the survival of these bacteria, it protects the microorganisms from adverse conditions such as high and low temperatures, pH, additives, or during processing and its passage through the gastrointestinal tract. Most flooring materials used in the carrier to microncapsulação probiotic foods are ionic microbial polysaccharides, exopolysaccharides, and milk proteins, which exhibit different physicochemical characteristics. The preparation of microcapsules results from numerous techniques available, each with its particularity. Among the microencapsulation techniques probiotics, extrusion is most popularly employed for obtaining microparticles. In this review, will be addressed topics regarding microencapsulation of probiotics by extrusion method associated with electrostatic interactions to develop microcapsules with potential application in foods.


Keywords


Probiotics. Microencapsulation. Extrusion. Electrostatic interactions. Food

References


Abdullah, N. (2015). Effect of addition of inulin and fenugreek on the survival of microencapsulated Enterococcus durans 39C in alginate-psyllium polymeric blends in simulated digestive system and yogurt. Asian Journal of pharmaceuticalsciences, 10, 350-361.

Albadran, H. A., Chatzifragkou, A., Khutoryanskiy, A. V., Charalampopoulos, D. (2015). Stability of probiotic Lactobacillus plantarum in dry microcapsules under accelerated storage conditions. Food Research International, 74, 208–216.

Albertini, B., Vitali, B., Passerinia, N., Crucianib, F.; Di Sabatinoa, M., Rodrigueza, L., Brigidi, P. (2010). Development of microparticulate systems for intestinal delivery of Lactobacillus acidophilus and Bifidobacterium lactis. European Journal of Pharmaceutical Sciences, 40, 359–366.

Altamirano-Fortoul, R., Moreno-Terrazas, R., Quezada-Gallo, A., Rosell, C. M. (2012). Viability of some probiotic coatings in bread and its effect on the crust mechanical properties. Food Hydrocolloide, 29, 166–74

Alves, M., Peres, C. M., Hernandez-Mendonza, A., M. Bronze, M. R., Peres , C., Malcata, F., X. (2015). Olive paste as vehicle for delivery of potential probiotic Lactobacillus plantarum 33. Food Research International, 75, 61–70.

Amine, K. M., Champagne, C. P., Salmieri, S., Britten, M., St-Gelais, D., Fustier, P., Lacroix, M. (2014). Effect of palmitoylated alginate microencapsulation on viability of Bifidobacterium longum during freeze-drying. LWT - Food Science and Technology, 56, 111-117.

Argin, S., Kofinas, P., Lo, Y. M. (2014). The cell release kinetics and the swelling behavior of physically crosslinked xanthanechitosan hydrogels in simulated gastrointestinal conditions. Food Hydrocolloids, 40, 138-144.

Barbosa, Y., M´arquez, E., Parra, K., Piñeiro, M.P., Medina LM. (2012). Development of a potential functional food prepared with pigeon pea (Cajanus cajan), oats and Lactobacillus reuteri ATCC 55730. International Journal Food Science Nutrition 63(7), 813–820.

Brasil. Lista de alegações de propriedade funcional aprovadas. Brasília. (2012). Disponível em:.

Burey, P., Bhandari, B. R, Howes, T., Gidley, M. J. (2008). Hydrocolloid Gel Particles: Formation, Characterization, and Application. Critical Reviews in Food Science and Nutrition, 48, 361-377.

Champagne, C. P., Fustier, P. (2007). Microencapsulation for the improved delivery of bioactive compounds into foods. Current Opinion in Biotechnology, 18(2), 184-190.

Chávarri, M., Marañón, I., Ares, r., Ibáñez, F. C., Marzo, F., Villarán, M. C. (2010). Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. International Journal of Food Microbiology, 142, 185–189.

Cook, M. T., Tzortzis, G., Charalampopoulos, D. (2012). Microencapsulation of probiotics for gastrointestinal delivery. Journal of Controlled Release, 162, 56-67.

Corona-Hernandez, R. I., Parrilla, E. A., Lizardi-Mendoza, J., Islas-Rubio, A. R., Rosa, L. A., Wall-Medrano, A. (2013). Structural Stability and Viability of Microencapsulated Probiotic Bacteria: A Review. Comprehensive Reviews in Food Science and Food Safety, 12, 614-628.

De Prisco, A., Maresca, D., Ongeng, D., Mauriello, G. (2015). Microencapsulation by vibrating technology of the probiotic strain Lactobacillus reuteri DSM 17938 to enhance its survival in foods and in gastrointestinal environment. LWT - Food Science and Technology, 61, 452-462.

Divya, J. B., Nampoothiri, K. M. (2015). Encapsulated Lactococcus lactis with enhanced gastrointestinal survival for the development of folate enriched functional foods. Bioresource Technology, 188, 226–230.

Etchepare, M. A., Raddatz, C. G., Flores, E. M. M., Zepka, L. Q., Jacob-Lopes, E., Barin, J. S., Grosso, C. R. F., Menezes, C. R. (2016). Effect of resistant starch and chitosan on survival of Lactobacillus acidophilus microencapsulated with sodium alginate. LWT - Food Science and Technology, 65, 511-517.

Fareez, I. M., Lim, S. M., Mishra, R. K., Ramasamy, K. (2015). Chitosan coated alginate–xanthan gum bead enhanced pH andthermotolerance of Lactobacillus plantarum LAB12. International Journal of Biological Macromolecules, 72, 1419–1428.

Fahimdanesh, M., Mohammadi, N., Ahari, H., Khosravi, M. A., Zanjani F. Z. H., Behrouznasab, K. 2012. Effect of microencapsulation plus resistant starch on survival of Lactobacillus casei and Bifidobacterium bifidum in mayonnaise sauce. African Journal Microbiology Research, 6(40), 6853–6858.

Food and Agriculture Organization of the United Nations; World Health Organization. (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria.

Gacesa, P. (1988). Alginates. Carbohidrate Polymers, 8, 161-182.

Gawkowski, D., Chikindas, M. L. (2013). Non-dairy probiotic beverages: the next step into human health. Beneficial Microbes, 4(2),127–42.

Gbassi, G. K. (2009) Microencapsulation of Lactobacillus plantarum spp in an alginate matrix coated with whey proteins. International Journal of Food Microbiology, 129, 103-105.

Gombotz, W. R., We, S. F. (1998). Protein release from alginate. Advanced Drug Delivery Reviews, 31, 67-285.

Gomes, A. A., Braga, S. P., Cruz, A. G., Cadena, R., Sm Lollo, P. C. B., Carvalho, C., Amaya-Farfan, J., Faria, J. A. F., Bollini, H. M. A. (2011). Effect of the inoculation level of Lactobacillus acidophilus in probiotic cheese on the physicochemical features and sensory performance compared with commercial cheeses. Journal Dairy Science, 94, 4777–4786.

Haghshenas, B., Nami, Y., Haghshenas, M., Barzegari, A., Sharifi, S., Radiah, D., Rosli, R., Abdullah, N. (2015). Effect of addition of inulin and fenugreek on the survival of microencapsulated Enterococcus durans 39C in alginate-psyllium polymeric blends in simulated digestive system and yogurt. Asian Journal of pharmaceutical sciences, 10, 350-361.

Heidebach, T. (2009). Microencapsulation of probiotics cells by means of rennet-gelation of milk proteins. Food hidrocolloids, 23, 1670-1677.

Ibarra, A., Acha, R., Calleja, M. T., Chiralt-Boix, A., Wittig, E. (2012). Optimization and shelf life of a low-lactose yogurt with Lactobacillus rhamnosus HN001. Journal Dairy Science, 95, 3536–3548.

Jackson, L. S.; Lee, K. (1991). Microencapsulation and Food Industry. LWT – Food Science and Technology, (24) 4, 289-297.

Jiménez-Pranteda, M. J., Poncelet, D., Náder-Macías, M. E., Arcos, A., Aguilera, M., Monteoliva-Sánchez,M., Ramos-Cormenzana, R. (2012). Stability of lactobacilli encapsulated in various microbial polymers, Journal of Bioscience and Bioengineering, 113(2), 179–184.

Jun-Xia, X., Hai-Yan, Y., Jian, Y. (2011). Microencapsulation of sweet orange oil by complex coacervation with soybean protein isolate/gum Arabic. Food Chemistry, 125, 1267–1272.

Kim, S. C., Olson, N. F. (1989). Production of methanethiol in milk fat-coated microcapsules containing Brevibacterium linens and methionine. Journal of Dairy Research, 56(5) 799-811.

Kim, S. J., Chob, S. Y., Kim, S. H., Songd, O. J., Shind, I. S., Cha, D. S., Park, H.J. (2008). Effect of microencapsulation on viability and other characteristics in Lactobacillus acidophilus ATCC 43121. Food Science and Technology, 41, 493–500.

Krasaekoopt, w., Watcharapoka, S. (2014). Effect of addition of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juice. LWT - Food Science and Technology, 57, 761-766.

Krasaekoopt, W., Bhandari, B., Deeth, H. (2003). The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. International Dairy Journal, 14, 737-743.

Krasaekoopt, W., Bhandari, B., Deeth, H. (2003). Review: Evaluation of encapsulation techniques of probiotics for yoghurt. International Dairy Journal, 13, 3-13.

Kreft, O., Prevot, M., Mohwald, H., Sukhorukov, G. B. (2007). Shell-in-Shell. Microcapsules: A Novel Tool for Integrated, Spatially Confined Enzymatic Reactions. Angew. Chem. Int., 46, 5605 –5608.

Lambert, J. M., Weinbreck, F., Kleerebezem, M. (2008). In vitro analysis of protection of the enzyme bile salt hydrolase against enteric conditions by whey protein – gum Arabic microencapsulation. Journal of Agricultural and Food Chemistry, 56, 8360- 8364.

Lee, S., Cha, D. S., Park, H. J. (2004). Survival of Freeze-Dried Lactobacillus bulgaricus KFRI 673 in Chitosan-Coated Calcium Alginate Microparticles. Journal Agricultural and Food Chemistry, 52(24), 7300-7305.

Ma, T., Pacan, J. C., Wang, Q., Sabour, P. M., Huang, X., Xu, Y. (2012). Enhanced alginate microspheres as means of oral delivery of bacteriophage for reducing Staphylococcus aureus intestinal carriage. Food Hydrocolloids, 26, 434-440.

Mattila-sandholm, T., Myllärinen, P., Crittenden, R.; Mogensen, G., Fondén, R., Saarela, M. (2002). Technological challenges for future probiotic foods. International Dairy Journal, 12, 173-182.

Menezes, C. R., Durrant, L. R. (2008). Xilooligossacarídeos: produção, aplicações e efeitos na saúde humana. Ciência Rural, 38, 587-592.

Mortazavian, A. M., Sohrabvandi, S. (2007). Probiotics and Food Probiotic Products. Eta Publication, 131-169.

Nazzaro, F.; Orlando, P.; Fratianni, F.; Coppola, R. (2011). Microencapsulation in food science and biotechnology. Current Opinion in Biotechnology, 23, 1–5.

Oliveira, A. C., Moretti, T. S., Boschini, C., Baliero, J. C. C., Freitas, O., Favaro-Trindade, C. S. (2007). Stability of microencapsulated B. lactis (BI 01) and L. acidophilus (LAC 4) by complex coacervation followed by spray drying. Journal of Microencapsulation, 24(7), 685-693.

Omar, J. M., Chan, Y., Jones, M. L., Prakash, S., Jones, P. J. H. (2013). Lactobacillus fermentum and Lactobacillus amylovorus as probiotics alter body adiposity and gut microflora in healthy persons. Journal of functional foods, 5, 116 –123.

Pasin, B. L., Azón, C. G., Garriga, A. M. (2012). Microencapsulación con alginato en alimentos. Técnicas y aplicaciones. Revista Venezolana de Ciencia y Tecnología de Alimentos, 3(1), 130-151.

Pasparakis, G. N., Bouropoulos, N. Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate-chitosan beads. International Journal Pharmaceutics, 323, 34–42, 2006.

Pasqualim, P., Culpi, T.A.; Kaminski, G. A. T.; Fin, M. T.; Sasso, D. G. B., Costa, C. K., Miguel, M. D., Fujiwara, G. M., Rodrigues, B. H., Zanin, S. M. W. (2010).Microcapsules of calcium alginate and vegetable oil by ionic gelation: a study of encapsulation capacity and skin application. Visão Acadêmica, Curitiba, 11(1).

Patil, J. S., Kamalapur, M. V., Marapur, S. C., Kadam, D. V. (2010). Ionotropic gelation and polyelectrolyte complexation: The novel techniques to design hydrogel particulate sustained, modulated drug delivery system: A review. Digest Journal of Nanomaterials and Biostructures, 5(1), 241-248.

Pedroso, D. D. L., Thomazini, M., Heinemann, R. J. B., Favaro-trindade, C. S. (2012). Protection of Bifidobacterium lactis and Lactobacillus acidophilus by microencapsulation using spray-chilling. International Dairy Journal, 26(2), 127–132.

Pinpimai, K., Rodkhum, Chansue, N., Katagiri, T., Maita, M., Pirarat, N. (2015). The study on the candidate probiotic properties of encapsulated yeast, Saccharomyces cerevisiae JCM 7255, in Nile Tilapia (Oreochromis niloticus). Research in Veterinary Science 102, 103–111.

Pirarat, N., Pinpimai, K., Rodkhum, C., Chansue, N., Ooi, E. L., Katagiri, T., Maita, M. (2015). Viability and morphological evaluation ofalginate-encapsulated Lactobacillus rhamnosus GG undersimulated tilapia gastrointestinal conditions and its effect ongrowth performance, intestinal morphology and protectionagainst Streptococcus agalactiae. Animal Feed Science and Technology, 207, 93–103.

Racoviţă, S., Vasiliu, S., Popa, M., Luca, C. (2009). Polysaccharides based on micro- and nanoparticles obtained by ionic gelation and their applications as drug delivery systems. Revue Roumaine de Chimie, 54(9), 709–718.

Ribeiro, M. C. E., Chaves, K. S., Gebara, C., Infante, F. N. S., Grosso, C. R. F., Gigante, M. L. (2014). Effect of microencapsulation of Lactobacillus acidophilus LA-5 on physicochemical, sensory and microbiological characteristics of stirred probiotic yoghurt. Food Research Internationa, l 66, 424–431.

Sandoval-Castilla, O., Lobato-Calleros, C., García-Galindo, H. S., Alvarez-Ramírez, J., Vernon-Carter, E. J. (2010). Textural properties of alginate–pectin beads and survivability of entrapped Lb. casei in simulated gastrointestinal conditions and in yoghurt. Food Research International, 43,111–117.

Shah, N. P. (2007). Functional cultures and health benefits. International Dairy Journal, 17,1262-1277.

Shaharuddin, S., Muhamad, I., I. (2015). Microencapsulation of alginate-immobilized bagasse with Lactobacillus rhamnosus NRRL 442: Enhancement of survivability andthermotolerance. Carbohydrate Polymers, 119, 173–181.

Sheu, T. Y., Marshall, R. T. (1993). Microentrapment of lactobacilli in calcium aginate gels. Journal of Food Science, 54(3), 557-561.

Shi, L. E., Li, Z. H., , Zhang, Z. L., Zhang, T. T., Yu, W. M., Zhou , M. L., Tang, Z. X. (2013). Encapsulation of Lactobacillus bulgaricus in carrageenan-locust bean gum coated milk microspheres with double layer structure. LWT - Food Science and Technology, 54, 147-151.

Smrdel, P. (2008). Shape optimization and characterization of polysaccharide beads prepared by ionotropic gelation. Journal of Microencapsulation, 25(2)90-105.

Sousa, S., Gomes, A. M., Pintado, M. H., Silva, J. P., Costa, P., Amaral, M. H., Duarte, A. C., Rodrigues, D., Rocha-Santos, T. A. P., Freitas, A. C. (2015). Characterization of freezing effect upon stability of probiotic loaded, calcium-alginate microparticles. Food and Bioproducts Processing, 93, 90–97.

Sultana, K., Godward, G., Reynolds, N., Arumugaswamy, R., Peiris, P., Kailasapathy, K. (2000). Encapsulation of probiotic bacteria with alginate-strach and evaluation of survival in simulated gastrointestinal conditions and in yogurt. International Journal of Food Microbiology, 62, 47–55.

Tomás, M. S. J., Gregorio, P. R., Terraf, M. C. L., Nader-Macıas, M. E. F. (2015). Encapsulation and subsequent freeze-drying of Lactobacillus reuteri CRL 1324 for its potential inclusion in vaginal probiotic formulations. European journal of pharmaceutical sciences, 79,87-95.

Trujillo-de Santiago, G., Saenz-Collins, C. P., Rojas-de Gante, C. (2012). Elaboration of a probiotic oblea from whey fermented using Lactobcillus acidophilus or Bifidobacterium. Journal Dairy Science, 95, 6897–904.

Valenga, F. (2007). Estudos de interação entre galactomanana e alginato e possíveis aplicações. 90 f. Dissertação (Mestrado em Bioquímica) – Centro de Ciências Biológicas, Universidade Federal do Paraná.

Valero-Cases, E., Frutos, M. J. (2015). Effect of different types of encapsulation on the survival of Lactobacillus plantarum during storage with inulin and in vitro digestion. LWT - Food Science and Technology, 64, 824-828.

Zanjani, M. A. K., Tarz, B. G., Sharifan, A., Mohammadi, N., Bakhoda, H., Madanipour, M. M. (2012). Microencapsulation of Lactobacillus casei with calcium alginate-resistant starch and evaluation of survival and sensory properties in cream-filled cake. African Journal Microbiology Research, 6(26), 5511–5517.




DOI: https://doi.org/10.5902/2179460X19718

Copyright (c)



Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

DEAR AUTHORS,

PLEASE, CHECK CAREFULLY BEFORE YOUR SUBMISSION:

1. IF ALL AUTHORS "METADATA" (ORCID, LINK TO LATTES, SHORT BIOGRAPHY, AFFILIATION) WERE ADDED,

2. THE CORRECT IDIOM YOUR SECTION,

3 IF THE HIGHLIGHTS WERE ADDED,

4. IF THE GRAPHIC ABSTRACTS WAS ADDED,

5. IF THE REVIEWERS INDICATION WAS DONE,

6. IF THE REFERENCES FORMAT ARE CORRECT(ABNT)

7. IF THE RESOLUTION YOUR FIGURES (600 DPI) ARE SUITABLE

8.  IF THE STATEMENT BY THE ETHICS COMMITTEE (IF IT INVOLVES HUMANS) WAS ADDED;

9. IF THE DECLARATION OF ORIGINALITY WAS ADDED.

10. IF THE TEXT IS ORIGINAL. IF THE IDEA HAS ALREADY BEEN REGISTERED IN SUMMARY FORM, OR PUBLISHED IN CONGRESS ANNUALS, PLEASE INFORM THE EDITOR.