Nanoestruturas Contendo Compostos Bioativos Extraídos de Plantas

Autores

  • Cristiane Franco Codevilla Departamento de Tecnologia e Ciência dos Alimentos -UFSM
  • Maiara Taís Bazana Departamento de Tecnologia e Ciência dos Alimentos -UFSM
  • Cristiane de Bona da Silva Departamento de Farmácia Industrial -UFSM
  • Juliano Smanioto Barin Departamento de Tecnologia e Ciência dos Alimentos -UFSM
  • Cristiano Ragagnin de Menezes Universidade Federal de Santa Maria

DOI:

https://doi.org/10.5902/2179460X19743

Palavras-chave:

Extratos de plantas. Nanotecnologia. Nanopartículas. Lipossomas. Nanoemulsões.

Resumo

Muitos compostos naturais, extraídos de frutas, legumes e verduras, tem potencial promissor na manutenção e promoção da saúde, bem como a prevenção e o tratamento de algumas doenças. Na indústria de alimentos, a utilização de extratos de plantas, como uma alternativa ao uso de antimicrobianos e antioxidantes químicos ou sintéticos, para combater patógenos de origem alimentar, inibir a oxidação lipídica e assim prolonga a vida de prateleira é uma tendência crescente. No entanto, a maior parte dos compostos bioativos presentes nestes extratos, como polifenóis, carotenóides, alcalóides, entre outros, apresentam baixa solubilidade em água, estabilidade e biodisponibilidade. Neste sentido, a nanotecnologia é uma abordagem inovadora que tem aplicações potenciais na investigação nutracêutica, uma vez que melhora essas características, além de melhorar a absorção de compostos bioativos, protegê-los contra a degradação prematura no organismo e prolongar o seu tempo de circulação. Existem diferentes sistemas nanoestruturados que podem ser empregados em alimentos, como lipossomas, nanopartículas poliméricas, nanopartículas lipídicas sólidas e nanoemulsões. Este trabalho apresenta uma revisão sobre os principais sistemas nanoestruturados utilizados para associação de diferentes extratos vegetais e algumas aplicações tecnológicas.

Downloads

Não há dados estatísticos.

Biografia do Autor

Cristiane Franco Codevilla, Departamento de Tecnologia e Ciência dos Alimentos -UFSM

Doutora em Ciências Farmacêuticas - UFRGS

Pós-doutoranda em Ciência e Tecnologia de Alimentos -UFSM

Maiara Taís Bazana, Departamento de Tecnologia e Ciência dos Alimentos -UFSM

Doutoranda em Ciência e Tecnologia de Alimentos -UFSM

Cristiane de Bona da Silva, Departamento de Farmácia Industrial -UFSM

Doutora em Ciências Farmacêuticas -UFRGS

Professora Centro de Ciências da Saúde - UFSM

Juliano Smanioto Barin, Departamento de Tecnologia e Ciência dos Alimentos -UFSM

Doutor em Química -UFSM

Cristiano Ragagnin de Menezes, Universidade Federal de Santa Maria

Doutorado em Ciência de Alimentos -FEA-UNICAMP

Prof. Adjunto DTCA UFSM

Biotecnologia e Microestrutura de Alimentos

Referências

Abbas, S., Karangwa, E., Bashari, M., Hayat, K., Hong, X., Sharif, H. R., Zhang, X. (2015) Fabrication of polymeric nanocapsules from curcumin-loaded nanoemulsion templates by self-assembly. Ultrasonics Sonochemistry 23, 81–92.

Anandharamakrishnan, C. (2014). Techniques for Nanoencapsulation of Food Ingredients, Springer.

Anton, N., Benoit, J. P., Saulnier, P. (2008). Design and production of nanoparticles formulated from nano-emulsion templates—A review. Journal of Controlled Release 128, 185–199.

Arana, L., Salado, C., Vega, S., Aizpurua-Olaizola, O., Arada, I., Suarez, T., Usobiaga, A., Arrondo, J. L. R., Alonso, A., Goni, F. G., Alkorta, I. (2015). Solid lipid nanoparticles for delivery of Calendula officinalis extract. Colloids and Surfaces B: Biointerfaces, 135, 18-26.

Ajazuddin, S. S. (2010). Applications of novel drug delivery system for herbal formulations. Fitoterapia, 81, 680–689.

Batista, C. M., Carvalho, C. M. B., Magalhães, N. S. (2007). Lipossomas e suas aplicações terapêuticas: Estado da arte. Revista Brasileira de Ciências Farmacêuticas, 43(2), 167-179.

Bhargava, K., Conti, D. S., Rocha, S. R. P., Zhang, Y. (2015). Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce. Food Microbiology, 47, 69-73.

Bonifácio, B. V., Silva, P. B., Ramos, M. A. S., Negri, K. M. S., Bauab, T. M., Chorilli, M. (2014). International Journal of Nanomedicine, 9, 1-15.

Dimer, F. A., Friedrich, R. B., Beck, R. C. R., Guterres, S. S., Pohlmann, A. R. (2013). Impactos da Nanotecnologia Na Saúde: Produção De Medicamentos. Quimica Nova, 36(10), 1520-1526.

Duncan, T. V. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science 363 (2011) 1–24.

Fernandez, P., Andre, V., Rieger, J., Kuhnle, K. (2004). Nano-emulsion formation by emulsion phase inversion. Colloids and Surfaces A: Physicochem. Eng. Aspects, 251, 53–58.

Ghorani, B., Tucker, N. (2015). Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocolloids, 51, 227-240.

Gibis, M., Vogt, E., Weiss, J. (2012). Encapsulation of polyphenolic grape seed extract in polymer-coated liposomes. Food & Function, 3, 246-254.

Gibis, M., Zeeb, B., Weiss, J. (2014). Formation, characterization, and stability of encapsulated hibiscus extract in multilayered liposomes. Food Hydrocolloids, 38, 28-39.

Gortzi, O., Lalas, S., Chinou, I., Tsaknis, J. (2007). Evaluation of the Antimicrobial and Antioxidant Activities of Origanum dictamnus Extracts before and after Encapsulation in Liposomes. Molecules, 12, 932-945.

Gortzi, O., Lalas, S., Chinou, J., Tsaknis, J. (2008). Reevaluation of bioactivity and antioxidant activity of Myrtus communis extract before and after encapsulation in liposomes. European Food Research and Technology, 226, 583-590.

Guan, Y., Wu, J., Zhong, O. (2016). Eugenol improves physical and chemical stabilities of nanoemulsions loaded with β-carotene. Food Chemistry, 194, 787-796.

Kakkar, V., Singh, S., Singla, D., Kaur, I. P. (2011). Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Molecular nutrition & food research, 55, 495-503.

Kumar, S., Chauhan, N., Gopal, M., Kumar, R. Dilbaghi, N. (2015). Development and evaluation of alginate–chitosan nanocapsules for controlled release of acetamiprid. International Journal of Biological Macromolecules, 81, 631-637.

Kumari, A., Yadav, S. K., Pakade, Y. B., Singh, B., Yadav, S. C. (2010). Development of biodegradable nanoparticles for delivery of quercetin. Colloids and Surfaces B: Biointerfaces, 80, 184-192.

Lu, Q., Li, D. C., Jiang, J. G. (2011). Preparation of a Tea Polyphenol Nanoliposome System and Its Physicochemical Properties. Journal of Agricultural and Food Chemistry, 59, 13004–13011.

Mehnert, W., Mader, K. (2001). Solid lipid nanoparticles Production, characterization and applications. Advanced Drug Delivery Reviews, 47, 165-196.

Mohammadi, A., Jafari, S. M., Esfanjani, A. F., Akhavan, S. (2016). Application of nano-encapsulated olive leaf extract in controlling the oxidative stability of soybean oil Food Chemistry, 190, 513-519.

Mora-Huertas, C. E.; Fessi, H., Elaissari, A. (2013). Polymer-based nanocapsules for drug delivery. International Journal of Pharmaceutics, 385, 113-142.

Neves, M. A., Hashemi, J., Prentice, C. (2015). Development of novel bioactives delivery systems by micro/nanotechnology. Current Opinion in Food Science, 1, 7-12.

Noronha, C. M., Granada, A. F., Carvalho, S. M., Lino, R. C., Maciel, M. V. O. B., Barreto, P. L. M. (2013). Optimization of α-tocopherol loaded nanocapsules by the nanoprecipitation method. Industrial Crops and Products, 50, 896-903.

Nuengchamnong, N., Hermans-Lokkerbol, A., Ingkaninan, K. (2004). Separation and Detection of the Antioxidant Flavonoids, Rutin and Quercetin, Using HPLC Coupled on-line With Colorimetric Detection of Antioxidant Activity. Naresuan University Journal, 12(2): 25-37.

Pardeike, J., Hommoss, A., Müller, R. H. (2009). Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. International Journal of Pharmaceutics, 366, 170-184.

Patidar, A., Thakur, D. S., Kumar, P., Verma, J. (2010). A Review on Novel Lipid Based Nanocarriers. International Journal of Pharmacy and Pharmaceutical Sciences, 2(4), 30-35.

Perumalla, A. V. S., Hettiarachchy, N. S. (2011). Green tea and grape seed extracts — Potential applications in food safety and quality. Food Research International, 44, 827-839.

Qian, C., Decker, E. A., Xiao, H., McClements, D. J. (2012). Nanoemulsion delivery systems: Influence of carrier oil on β-carotene bioaccessibility. Food Chemistry, 135, 1440-1447.

Quintão, F. J. O., Tavares, R. S. N., Vieira-Filho, S. A., Souza, G. H. B., Santos, O. D. H. (2013). Hydroalcoholic extracts of Vellozia squamata: study of its nanoemulsions for pharmaceutical or cosmetic applications. Revista Brasileira de Farmacognosia, 23(1), 101-107.

Salminen, H., Gömmel, C., Leuenberger, B. H., Weiss, J. (2016). Influence of encapsulated functional lipids on crystal structure and chemical stability in solid lipid nanoparticles: Towards bioactive-based design of delivery systems. Food Chemistry, 190, 928-937.

Schaffazick, S. R., Guterres, S. S., Freitas, L. L., Pohlmann, A. R. (2003). Caracterização e estabilidade físico-química de sistemas poliméricos nanoparticulados para administração de fármacos. Quimica Nova, 26(5), 726-737, 2003.

Schmaltz, C., Santos, J. V., Guterres, S. S. (2005). Nanocápsulas como uma tendência promissora na área cosmética: A imensa potencialidade deste pequeno grande recurso. Infarma, 16, 13-14.

Shin, G. H., Kim, J. T., Park, H. J. (2015). Recent developments in nanoformulations of lipophilic functional foods. Trends in Food Science & Technology, in Press.

Silva, L. M., Hill, L. E., Figueiredo, E., Gomes, C. L. (2014). Delivery of phytochemicals of tropical fruit by-products using poly(DL-lactide-co-glycolide) (PLGA) nanoparticles: Synthesis, characterization, and antimicrobial activity. Food Chemistry, 165, 362-370.

Silva Junior, E., Zanon Junior, G. B., Zanella, I., Raffin, R., Cielo, V., Rossato, J., Bulhões, L. O. S. (2013). Formação de nanoemulsões do tipo óleo em água contendo óleo de semente de romã. Disciplinarum Scientia. Série: Ciências Naturais e Tecnológicas, 14(1), 115-122.

Spigno, G., Donsì, F., Amendola, D., Sessa, M, Ferrari, G., D. Faveri, M. (2013). Nanoencapsulation systems to improve solubility and antioxidant efficiency of a grape marc extract into hazelnut paste. Journal of Food Engineering, 114, 207-214.

Solans, C., Izquierdo, P., Nolla, J., Azemar, N. (2005). Nano-emulsions. Current Opinion in Colloid & Interface Science, 10(3-4), 102-110.

Wang, S., Marcone, M F., Barbut, S., Lim, L. T. (2012). Fortification of dietary biopolymers-based packaging material with bioactive plant extracts. Food Research International, 49, 80-91.

Wang, S., Su, R., Nie, S., Sun, M., Zhang, J., Wu, D., Moustaid-Moussa, N. (2014). Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. Journal of Nutritional Biochemistry, 25, 363-376.

Xie, X., Tao, Q., Zou, Y., Zhang, F., Guo, M., Wang,Y., Wang, H., Zhou, Q., Yu, S. (2011). PLGA Nanoparticles Improve the Oral Bioavailability of Curcumin in Rats: Characterizations and Mechanisms. Journal of Agricultural and Food Chemistry, 59, 9280-9289.

Zorzi, G. K., Carvalho, E. L. S., Poser, G. L., Teixeira, H. F. (2015). On the use of nanotechnology-based strategies for association ofcomplexes matrices from plant extracts. Revista Brasileira de Farmacognosia, in press.

Downloads

Publicado

2015-12-15

Como Citar

Codevilla, C. F., Bazana, M. T., Silva, C. de B. da, Barin, J. S., & Menezes, C. R. de. (2015). Nanoestruturas Contendo Compostos Bioativos Extraídos de Plantas. Ciência E Natura, 37, 142–151. https://doi.org/10.5902/2179460X19743

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 > >>