Comparative analysis of meteorological data from Rio Brilhante MS: INMET station, BR-DWGD database and ERA5 reanalysis

Authors

Keywords:

Correlation, Precipitation, Temperature

Abstract

Considering agriculture as one of the main economic poles in Brazil, the state of Mato Grosso do Sul is an important center of agricultural and livestock production. Studying the climate during all months of the year, identifying the most critical periods, is of great importance for agriculture in the region, and can provide valuable information for decision-making and risk reduction. The objective of this work is the comparison between the data observed in the surface meteorological station and of two different databases, ERA5 and BR-DWGD. Daily data were used and the variables of temperature (mean, maximum and minimum, in ºC) and precipitation (mm) occurred in the twelve months of the year in the period from 2009 to 2022, from station A743 of the National Institute of Meteorology (INMET), installed at Rio Brilhante, Mato Grasso do Sul, Brazil (21,775°S, 54,528°W and 324.31 m altitude) and Reanalysis data from the ERA5 global model and the BR-DWGD data. The results of the comparison between the databases and the observed data showed that the precipitation values ​​have low correlation and greater variation with the observed data, although the BR-DWGD has a correlation of 0.83. Temperature values ​​showed values ​​between 0.8 and 1 in both databases. Thus, the BR-DWGD database is more suitable for the climate analysis of the study region.

Downloads

Download data is not yet available.

Author Biographies

Bruna Rossales Perleberg, Universidade Federal de Pelotas

Undergraduate student in Meteorology at the Federal University of Pelotas

Samuel Hosser, Universidade Federal de Pelotas

Graduating in Meteorology at the Federal University of Pelotas

Luciana Barros Pinto, Universidade Federal de Pelotas

PhD in Applied Meteorology from the Federal University of Viçosa and Professor at the Faculty of Meteorology at the Federal University of Pelotas.

Douglas da Silva Lindemann, Universidade Federal de Pelotas

PhD in Applied Meteorology from the Federal University of Viçosa and Professor at the Faculty of Meteorology of the Federal University of Pelotas.

References

CAMPBELL, B. Climate change impacts and adaptation options in the agrifood system – A summary of recent IPCC Sixth Assessment Report findings. Rome, FAO, 2022. DOI 10.4060/cc0425en.

CONAB. 2023. Safra brasileira de grãos. Disponível em: https://www.conab.gov.br/info-agro/safras/graos. Acesso em 16 abr. 2023.

CUNHA, R. C. C.; FARIAS, F. R. Dinâmica produtiva e ordenamento territorial dos agronegócios do Mato Grosso do Sul pós-2003. Geosul, v. 34, n. 71, p. 130-153, 2019. DOI 10.5007/1982-5153.2019v34n71p130.

DORSA, A. C. C.; CONSTANTINO, M. Análise do desempenho econômico da região Centro-Oeste, Brasil, de 2002 a 2015. Multitemas, v. 25, n. 60, p. 181-206, 2020. DOI 10.20435/multi.v25i60.2466.

FAROOQ, A.; FAROOQ, N.; AKBAR, H.; HASSAN, Z.U.; GHEEWALA, S.H. A Critical Review of Climate Change Impact at a Global Scale on Cereal Crop Production. Agronomy, v. 13, 162, 2023. DOI 10.3390/agronomy13010162.

HERSBACH, H.; BELL, B.; BERRIDFORD, P.; HIRAHARA, S.; HORáNYI, A. et al The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, v. 146, n. 730, p. 1999-2049, 2020. DOI 10.1002/qj.3803.

INMET - Instituto Nacional de Meteorologia . Normais Climatológicas 1991-2020. Disponível em: https://clima.inmet.gov.br/NormaisClimatologicas/1991-2020/precipitacao_acumulada_mensal_anual. Acesso em: 16 Abr. 2023.

NIMER, E. 1977. Clima: Geografia do Brasil – Região Centro-Oeste. Rio de Janeiro: IBGE. 364 p.

PELLEGRINO, G.Q.; ASSAD, E.D.; MARIN, F.R. Mudanças Climáticas Globais e a Agricultura no Brasil. Revista Multiciência, n. 8. 2007.

SERRA, A.; RATISBONNA, L. As massas de ar da América do Sul: 2ª parte. Revista Geográfica, v. 52, n. 1, p. 41-61. 1960.

STÜKER, E.; SCHUSTER, C. H.; SCHUSTER, J. J.; CAETANO SANTOS, D.; MEDEIROS, L. E.; DENARDIN COSTA, F.; DEMARCO, G.; SCREMIN PUHALES, F. (2016), Comparação entre os dados de vento das reanálises meteorológicas ERA-Interim e CFSR com os dados das estações automáticas do INMET no Rio Grande do Sul. Ciência e Natura, v. 38, p.284-290. 2016. DOI 10.5902/2179460X20233

WILLMOTT, C.J.; AKLESON, G.S.; DAVIS, R.E. et al. Statistic for the evaluation and comparison of models. Journal of Geophysical Research, v. 90, p. 8995-9005, 1985.

XAVIER, A. C.; SCANLON, B. R.; KING, C. W.; ALVES, A. I. New improved Brazilian daily weather gridded data (1961–2020). Int. J. Climatol. v. 42, p. 8390-8404. may. 2022. DOI 10.1002/joc.7731.

Published

2025-04-30

How to Cite

Perleberg, B. R., Hosser, . S., Pinto, L. B., & Lindemann, D. da S. (2025). Comparative analysis of meteorological data from Rio Brilhante MS: INMET station, BR-DWGD database and ERA5 reanalysis. Ciência E Natura, 47(esp. 3), e84142. Retrieved from https://periodicos.ufsm.br/cienciaenatura/article/view/84142

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.