Shallow water equations applied to dam break analysis

Authors

DOI:

https://doi.org/10.5902/2179460X90599

Keywords:

Shallow waters, Finite elements, Dam break, Numerical methods, Mathematical modeling

Abstract

This work presents the shallow water equation, which takes into account variations in quantities (water height and flow speed). This equation will be used to model dam failure problems in areas where the variation in the lateral direction (y) is significant, such as in valleys or uneven terrain. Since this is a simplification of the Navier-Stokes equations, it is assumed that the depth variation in the vertical (z) direction is much smaller compared to the horizontal dimensions of the problem. For the numerical solution of this equation, the finite element method is used in the semi-implicit form of the general formulation of the characteristic variables. A case study will be addressed, showing validation with results from the literature.

Downloads

Download data is not yet available.

Author Biographies

Gustavo Braz Kurz, Universidade Federal de Pelotas

Graduated in Mathematics (2021) from the Federal University of Pelotas (UFPEL). Currently studying in the postgraduate program in Mathematical Modeling at UFPEL, in the area of ​​computational fluid dynamics, working with the shallow water equation. Solving these equations through finite elements spatially and in time using the CBS (Characteristic-Based-Split) method.

Renato Vaz Linn, Universidade Federal do Rio Grande do Sul

Civil Engineering (2010), Master (2013) and Doctor in Civil Engineering in the Structural Mechanics Area by Federal University of Rio Grande do Sul (UFRGS). 

Daniela Buske, Universidade Federal de Pelotas

He has a degree in Mathematics Full Degree from the Federal University of Santa Maria (1999), a master's and doctorate in Mechanical Engineering from the Federal University of Rio Grande do Sul (2004;2008) in the area of ​​Transport Phenomena / Pollutant Dispersion and a post-doctorate from Federal University of Rio Grande do Sul (2011) in the area of ​​Nuclear Engineering. 

Leonidas Alejandro Arias Baltazar, Universidade Federal de Lavras

He holds a PhD in Water Resources, Area of ​​Concentration in Water Resources, from the Federal University of Lavras (2023), and is a PhD candidate in Applied Meteorology from the Federal University of Viçosa (2023). He has a Master's degree in Hydrological and Hydraulic Engineering from the Technical University of Oruro (2017), and a degree in Agricultural Engineering from the National Agricultural University La Molina, Lima-Peru (1990). 

Régis Sperotto Quadros, Universidade Federal de Pelotas

He holds a degree in Mathematics from the University of Passo Fundo (2000), a master's degree in Applied Mathematics from the Federal University of Rio Grande do Sul (2003), a PhD in Applied Mathematics from the Technische Universität Darmstadt in Darmstadt, Germany (2009), and a postdoctoral degree in Nuclear Energy from the Federal University of Rio Grande do Sul (2014).

References

Abbott, M. B. (1979). Computational Hydraulics: Elements of the Theory of Free Surface Flows. Pitman Pub.

Akin, J. (2005). Finite Element Analysis with Error Estimators: An Introduction to the FEM and Adaptive Error Analysis for Engineering Students. Butterworth-Heinemann.

Caleffi, V., Valiani, A., & Zanni, A. (2003). Finite volume method for simulating extreme flood events in natural channels. Journal of Hydraulic Research, 41(2):167–177. https://doi.org/10.1080/00221680309499959.

Clebsch, R. (1883). Theorie de l’elasticit´e des corps solides. Dunod.

Donea, J. & Huerta, A. (2003). Finite Element Methods for Flow Problems. John Wiley & Sons.

Guo, W., Lai, J., Lin, G., Lee, F., & Tan, Y. (2011). Finite-volume multi-stage scheme for advection-diffusion modeling in shallow water flows. Journal of Mechanics, 27(3):415–430.

Hughes, T. J., Wing Kam Liu, D., & Zimmermann, T. K. (2012). The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Courier Corporation.

International Center for Numerical Methods in Engineering (2024). GiD: The Personal Pre and Post Processor. Vers˜ao 16.1.3. https://www.gidhome.com/.

Kawahara, M. (1980). On finite-element methods in shallow-water long-wave flow analysis. In Oden, J., editor, Computational Methods in Nonlinear Mechanics. (pp. 261–287). North-Holland.

Kocaman, S. & Ozmen-Cagatay, H. (2015). Investigation of dam-break induced shock waves impact on a vertical wall. Journal of Hydrology, 525:1–12. https://www.sciencedirect.com/science/article/pii/S0022169415002115.

Kolman, R., Okrouhl´ık, M., Berezovski, A., Gabriel, D., Kopaˇcka, J., & Pleˇsek, J. (2017). B-spline based finite element method in one-dimensional discontinuous elastic wave propagation. Applied Mathematical Modelling, 46:382–395. https://www.sciencedirect.com/science/article/pii/S0307904X17300835.

Lakhlifi, Y., Daoudi, S., & Boushaba, F. (2018). Dam-break computations by a dynamical adaptive finite volume method. Journal of Applied Fluid Mechanics, 11(6):1543–1556.

Li, S. & Duffy, C. J. (2012). Fully-coupled modeling of shallow water flow and pollutant transport on unstructured grids. Procedia Environmental Sciences, 13:2098–2121.

Linn, R. V. (2013). Simulação computacional de escoamentos compress´ıveis utilizando adaptação de malhas anisotr´opica. [Dissertaç˜ao de Mestrado, Programa de P´os-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul]. Reposit´orio Digital Lume UFRGS.

Michel, S. (2022). Finite Element Methods for Shallow Water Equations: Analysis, Modeling and Applications to Coastal Hydrodynamic. [Doutorado em matem´atica e Ciˆencias da Computaç˜ao Matem´atica Aplicada e aplicaç˜ao da matem´atica, Universidade de Bord´eu]. Portal de teses HAL.

Peraire, J. (1986). A Finite Element Method for Convection Dominated Flows. University College of Swansea.

Rao, S. (2017). The Finite Element Method in Engineering. Elsevier Science. https://books.google.com.br/books?id=XN0kDwAAQBAJ.

Reddy, J. (2005). Introduction to the Finite Element Method. McGraw-Hill Science/Engineering/Math.

Ruas, V. (2013). Hermite finite elements for second order boundary value problems with sharp gradient discontinuities. Journal of Computational and Applied Mathematics, 246:234–242. https://www.sciencedirect.com/science/article/pii/S0377042712003494.

Silva, C. S. (2007). Inundac¸ ˜oes em Pelotas/RS: o uso de geoprocessamento no planejamento paisag´ıstico e ambiental. [Dissertaç˜ao de Mestrado, Programa de P´os-Graduação em Arquitetura e Urbanismo, Faculdade de Arquitetura e Urbanismo, Universidade Federal de Santa Catarina]. Biblioteca Digital Brasileira de Teses e Dissertaç˜oes.

Szmelter, J. & Smolarkiewicz, P. K. (2010). An edge-based unstructured mesh discretization in geospherical framework. Journal of Computational Physics, 229(13):4980–4995. https://www.sciencedirect.com/science/article/pii/

S0021999110001270.

Szmelter, J. & Smolarkiewicz, P. K. (2011). An edge-based unstructured mesh framework for atmospheric flows. Computers & Fluids, 46(1):455–460.

Tecplot, Inc. (2024). Tecplot 360. Vers˜ao 2024R1. https://www.tecplot.com/products/tecplot-360/.

Thomas, C. G. & Nithiarasu, P. (2005). Effect of variable smoothing and stream line direction on the viscous compressible flow calculations. International Journal of Numerical Methods for Heat and Fluid Flow, 15:420–428.

Zienkiewicz, O. & Ortiz, P. (1998). The characteristic based split algorithm in hydraulic and shallow-water flows. keynote lecture. In Jayawardena, A., Lee, J., & Wang, Z., editors, 2nd International Symposium on Environmental Hydraulics. CRC Press.

Zienkiewicz, O. C., Taylor, R. L., & Nithiarasu, P. (2013). The finite element method for fluid dynamics. (6th ed.). Butterworth-Heinemann.

Zienkiewicz, O. C., Taylor, R. L., & Nithiarasu, P. (2014). The Finite Element Method for Fluid Dynamics. (7th ed.). Elsevier Butterworth-Heinemann.

Published

2025-02-14

How to Cite

Kurz, G. B., Linn, R. V., Buske, D., Baltazar, L. A. A., & Quadros, R. S. (2025). Shallow water equations applied to dam break analysis. Ciência E Natura, 47(esp. 1). https://doi.org/10.5902/2179460X90599

Issue

Section

IV Jornada de Matematica e Matematica aplicada UFSM

Most read articles by the same author(s)

1 2 3 4 5 > >>