Impact of vaccination on dengue transmission: an epidemiological model

Authors

DOI:

https://doi.org/10.5902/2179460X90552

Keywords:

Dengue vaccination, SIR model, Dengue epidemiology, Vaccination coverage, Dengue transmission dynamics

Abstract

This study analyzes the impact of vaccination on dengue transmission using an epidemiological model of the SIR (Susceptible-Infected-Recovered) type. The model considers interactions between humans and vectors, and control strategies such as vaccination and mosquito population management. The results show a substantial reduction in dengue cases with vaccination, reinforcing its importance as an essential tool for public health. Recent data and simulations developed supported the conclusions, highlighting the role of mathematical models in the development of effective policies.

Downloads

Download data is not yet available.

Author Biographies

Daniela Buske, Universidade Federal de Pelotas

Doctorate in Mechanical Engineering from the Federal University of Rio Grande do Sul.

Luciana Rossato Piovesan, Universidade Federal de Pelotas

PhD in Engineering, with an emphasis on Transport Phenomena, from the Federal University of Rio Grande do Sul (2022). 

Letiane Ludwig Mielke, Universidade Federal de Pelotas

Master in Mathematical Modeling (UFPel).

Alexandre Sacco de Athayde, Universidade Federal de Pelotas

Doctorate in mechanical engineering. He has experience in the area of ​​Mathematics, with an emphasis on Applied Mathematics.

Régis Sperotto de Quadros, Universidade Federal de Pelotas

PhD in Applied Mathematics from the Technische Universität Darmstadt in Darmstadt, Germany (2009), and a postdoctoral degree in Nuclear Energy from the Federal University of Rio Grande do Sul (2014).

Glênio Aguiar Gonçalves, Universidade Federal de Pelotas

PhD in Mechanical Engineering from the Federal University of Rio Grande do Sul (2003) and a post-doctorate from UFRGS (2008).

Angelita dos Reis Gomes, Universidade Federal de Pelotas

PhD in Veterinary Sciences - Animal Health (UFPel, 2016).

References

Amorim, M. P. (2020). Modelos Matem´aticos e Computacionais da Dengue via Equaç˜oes Diferenciais Ordin´arias com Estrat´egias de Controle. [Dissertac¸ ˜ao de Mestrado, Programa de P´os-Graduac¸ ˜ao em Modelagem Computacional em Ciˆencia e Tecnologia, Universidade Federal Fluminense]. Reposit´orio Institucional UNESP.

Brady, O. J., Gething, P. W., Bhatt, S., Messina, J. P., Brownstein, J. S., Hoen, A. G., Moyes, C. L., Farlow, A. W., Scott, T. W., & Hay, S. I. (2015). Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Neglected Tropical Diseases, 9(8):e0003657.

Coudeville, L. & Garnett, G. (2012). Transmission dynamics of the four dengue serotypes in southern vietnam and the potential impact of vaccination. Plos One, 7(12).

DeRoeck, D., Deen, J., & J, D. C. (2003). Policymakers’ views on dengue fever/dengue haemorrhagic fever and the need for dengue vaccines in four southeast asian countries. Vaccine, 22(1):121–9.

Farrington, C. P. (2003). On vaccine efficacy and reproduction numbers. Mathematical Biosciences, 185(1):89–109.

Giesecke, J. (2017). Modern Infectious Disease Epidemiology. CRC/Press.

Kall´as, E. G., Cintra, M. A., Moreira, J. A., Pati˜no, E. G., Braga, P. E., Ten´orio, J. C., & Infante, V. (2024). Live, attenuated, tetravalent butantan–dengue vaccine in children and adults. The New England Journal of Medicine, 390(5):397–408.

Knipl, D. & Moghadas, S. (2015). The potential impact of vaccination on the dynamics of dengue infections. Bulletin of Mathematical Biology, 77(12):2212–2230.

Kurauchi, M. L. (2020). Modelagem do efeito de uma vacina contra a dengue na redução da evolução da resistˆencia contra o antibi´otico devido uso inadequado em casos de dengue. [Tese de Doutorado, Programa de Patologia da Faculdade de Medicina, Universidade de S˜ao Paulo]. Reposit´orio da Produção USP.

Kwon, S. (2023). Nonequilibrium phase transitions in metapopulation models of infectious diseases on heterogeneous networks. Journal of Physics a Mathematical and Theoretical, 56(37).

Lourenço, J. & Recker, M. (2016). Dengue serotype immune-interactions and their consequences for vaccine impact predictions. Epidemics, 16:40–48.

Lowe, R., S. Lee, K. O., Brady, O., Bastos, L., Carrasco-Escobar, G., Cat˜ao, R. C., Col´on-Gonz´alez, F., Barcellos, C., Carvalho, M. S., Blangiardo, M., Rue, H., & Gasparrini,

A. (2021). Combined effects of hydrometeorological hazards and urbanisation on dengue risk in brazil: a spatiotemporal modelling study. The Lancet Planetary Health, 5(4):e209–e219.

Messina, J. P., Brady, O. J., Golding, N., Kraemer, M. U. G., Wint, G. R. W., Ray, S. E., Pigott, D. M., Shearer, F. M., Johnson, K., & Earl, L. (2019). The current and future global distribution and population at risk of dengue. Nature Microbiology, 4(9):1508–1515.

Milunovic, M. & Krsti´c, M. (2022). Long time behavior of an two diffusion stochastic sir epidemic model with nonlinear incidence and treatment. Filomat, 36(8):2829–2846.

Ndii, M., Mage, A., Messakh, J., & Djahi, B. (2020). Optimal vaccination strategy for dengue transmission in kupang city, indonesia. Heliyon, 6(11):e05345.

Reich, N., Shrestha, S., King, A., Rohani, P., Lessler, J., Kalayanarooj, S., Yoon, I.-K., Gibbons, R. V., Burke, D. S., & Cummings, D. (2013). Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity. Journal of the Royal Society Interface, 10(86):20130414.

Rodrigues, H. S. (2012). Optimal control and numerical optimization applied to epidemiological models. [Tese de Doutorado, Programa Doutoral em Matem´atica e Aplicaç˜oes, Universidade de Aveiro e Universidade de Minho]. arXiv.

Rodrigues, H. S., Monteiro, M. T. T., & Torres, M. D. F. (2014). Vaccination models and optimal control strategies to dengue. Mathematical Biosciences, 247:1–12.

Rodriguez-Barraquer, I., y Teran-Romero, L. M., Schwartz, I., Burke, D., & Cummings, D. (2014). Potential opportunities and perils of imperfect dengue vaccines. Vaccine, 32(4):514–520.

Scherer, A. & McLean, A. (2002). Mathematical models of vaccination. British Medical Bulletin, 62(1):187–199

Shepard, D. S., Undurraga, E. A., Halasa, Y. A., & Stanaway, J. D. (2016). The global economic burden of dengue: A systematic analysis. The Lancet Infectious Diseases, 16(8):935–941.

Shim, E. (2017). Cost-effectiveness of dengue vaccination in yucat´an, mexico using a dynamic dengue transmission model. Plos One, 12(4):e0175020.

Suwantika, A., Supadmi, W., Ali, M., & Abdulah, R. (2021). Cost-effectiveness and budget impact analyses of dengue vaccination in indonesia. Plos Neglected Tropical Diseases, 15(8).

Tang, B., Xi, H., Xiao, Y., Ruan, S., & Wu, J. (2018). A conceptual model for optimizing vaccine coverage to reduce vector-borne infections in the presence of antibody-dependent enhancement. Theoretical Biology and Medical Modelling, 15(13):1–19.

Thisyakorn, U., Saokaew, S., Gallagher, E., Kastner, R., Sruamsiri, R., Oliver, L., & Hanley, R. (2022). Epidemiology and costs of dengue in thailand: a systematic literature review. Plos Neglected Tropical Diseases, 16(12):e0010966.

Thome, R. C., Yang, H. M., & Esteva, L. (2010). Optimal control of aedes aegypti mosquitoes by the sterile technique and insecticide. Mathematical Biosciences, 223:12–23.

WHO (2023). Dengue and severe dengue.

Wilder-Smith, A., Ooi, E. E., Horstick, O., & Wills, B. (2019). Dengue. The Lancet, 393(10169): 350–363.

Published

2025-02-14

How to Cite

Buske, D., Piovesan, L. R., Mielke, L. L., Athayde, A. S. de, Quadros, R. S. de, Gonçalves, G. A., & Gomes, A. dos R. (2025). Impact of vaccination on dengue transmission: an epidemiological model. Ciência E Natura, 47(esp. 1). https://doi.org/10.5902/2179460X90552

Issue

Section

IV Jornada de Matematica e Matematica aplicada UFSM

Most read articles by the same author(s)

1 2 3 4 5 > >>