A preliminary study on the application of the two-space nonperiodic asymptotic homogenization method to the EEG forward problem with continuously differentiable coefficient
DOI:
https://doi.org/10.5902/2179460X75138Keywords:
Non-periodic Asymptotic Homogenization, Two-Space Method, Micro-heterogeneous Media, Electroencephalogram, Inverse ProblemsAbstract
The knowledge on the Electroencephalogram (EEG) forward problem is important to improve the imaging of the neural activity, that is an inverse problem. This paper introduces the study of the EEG forward problem via a nonperiodic homogenization technique: the two-space method. Considering a concentric spheres head model for the brain-skull-scalp medium as an micro-heterogeneous medium, a simplification consisting of a 1D problem in spherical coordinates with continuously differentiable coefficient is considered. The two-space method is applied successfully, and a numerical example shows the convergence of the micro-heterogeneous solution to the one obtained by the two-space method, as was expected. The preliminary conclusion is that this approach for the EEG forward problem with homogenization techniques shows itself as very promising. More experiments should be executed, considering more realistic models for the head.
Downloads
References
Bakhvalov, N., Panasenko, G. (1989). Homogenization: Averaging processes in periodic media, 1º edn. Kluwer Academic Publishers.
Demidovich, B., Baranenkov, G., Efimenko, V., Frolov, S., Kogan, S., Luntz, G., Porshneva, E., Shostak, R., Sitcheva, E.,
Yanpolski, A. (1987). Problemas e Exercícios de Análise Matemática, 6º edn. Mir.
Décio Jr, R., Pérez-Fernández, L., Bravo-Castillero, J. (2019). Exactness of formal asymptotic solutions of a Dirichlet problem modeling the steady state of functionally-graded microperiodic nonlinear rods. Journal of Applied Mathematics and Computational Mechanics, 18(3), 45–56.
Engwer, C., Vorwerk, J., Ludewig, J., Wolters, C. H. (2017). A discontinuous galerkin method to solve the eeg forward problem using the subtraction approach. SIAM Journal on Scientific Computing, 39(1), B138–B164, URL https://doi.org/10.1137/15M1048392.
Folland, G. (1992). Fourier Analysis and its Applications. Mathematics Series, 1º edn. Wadsworth and Brooks, Cole.
Hallez, H., Vanrumste, B., Grech, R., Muscat, J., De Clercq, W., Vergult, A., D’Asseler, Y., Camilleri, K., Fabri, S., Van Huffel, S., Lemahieu, I. (2007). Review on solving the forward problem in eeg analysis. Journal of NeuroEngineering and Rehablitation, 4, 46.
Keller, J. (1980). Darcy’s law for flow in porous media and the two-space method. In: Nonlinear differential partial equations in engineering and applied science (eds. Sternberg, R.L., Kalinowski, A. J., Papadakis, J.S.), Marcel Dekker, Inc., pp. 429–443.
Larsson, S., Thomée, V. (2009). Partial Differential Equations with Numerical Methods, 1º edn. Springer-Verlag.
Morales, E., Acosta-Medina, C., Castellano-Domínguez, G., Mantini, D. (2019). A finite-difference solution for the EEG forward problem in inhomogeneous anisotropic media. Brain Topography, 32, 229–239.
Nandakumaran, A. (2007). An overview of homogenization. Journal of the Indian Institute of Science, 87(4), 475–484.
Panasenko, G. (2008). Homogenization for periodic media: from microscale to macroscale. Physics of Atomic Nuclei, 71(4), 681–694.
Piastra, M. C., Nüßing, A., Vorwerk, J., Bornfleth, H., Oostenveld, R., Engwer, C., Wolters, C. H. (2018). The discontinuous galerkin finite element method for solving the meg and the combined meg/eeg forward problem. Frontiers in Neuroscience, 12, URL https://www.frontiersin.org/articles/10.3389/fnins.2018.00030.
Suárez, N., Bravo-Castillero, J., Guínovart-Díaz, R., Rodríguez-Ramos, R. (2016). Homogenización no periódica y método de los dos espacios. Jornada Científica ICIMAF 2016 Instituto de Cibernética, Matemática y Física, Havana.
Teschl, G. (2012). Ordinary Differential Equations and Dynamical Systems. American Mathematical Society, Providence.
Downloads
Published
Versions
- 2023-12-01 (2)
- 2023-12-01 (1)
How to Cite
Issue
Section
License
Copyright (c) 2023 Ciência e Natura
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.