Fractional calculus applied to the Cournot-type adjustment model

Authors

DOI:

https://doi.org/10.5902/2179460X73724

Keywords:

Generalized Cournot model, Memory, Duopoly

Abstract

In this contribution, we propose the incorporation of memory in a Cournot-type model for the process of adjusting the production of firms in a duopoly market, through the calculation of fractional order. Under the simplifying assumption that the inverse demand and costs of firms are affine functions of the quantities produced, we show numerically some conditions on memory (fractional derivative order) and on the speed of the adjustment process, so that the model proposed converges to Cournot's generalized stationary points. Under these assumptions, we show that the firm that has more memory obtains greater profit.

Downloads

Download data is not yet available.

Author Biographies

Adriano De Cezaro, Federal University of Rio Grande

Atualmente é Professor Adjunto IV da Universidade Federal do Rio Grande. Tem experiência na área de Matemática Aplicada, com ênfase em Problemas Inversos - problemas de identificação de parâmetros em modelos de tomografias, modelos de equações diferenciais - regularização para problemas inversos, métodos iterativos e contínuos de regularização, métodos level set para problemas inversos. Também tem interesse em modelagens de sistemas dinâmicos em modelos biofísicos, com aplicações em dispersão de doenças e ritmos biológicos. 

Matheus Madeira Correa, Federal University of Rio Grande

Possui graduação em Matemática Aplicada pela Universidade Federal do Rio Grande(2019)

References

Agliari, A., Gardini, L. & Puu, T. (2000). The dynamics of a triopoly cournot game. Chaos, Solitons & Fractals, 15(11), 2531–2560. Retrieved from https://www.sciencedirect.com/science/article/pii/S0960077999001605. doi: 10.1016/S0960-0779(99)00160-5

Agliari, A., Naimzada, A. K. & Pecora, N. (2016). Nonlinear dynamics of a cournot duopoly game with differentiated products. Applied Mathematics and Computation, 281(1), 1–15. Retrieved from https://www.sciencedirect.com/science/article/pii/S0096300316300455. doi: 10.1016/j.amc.2016.01.045

Ahmed, E. & Agiza, H. N. (1998). Dynamics of a cournot game with n-competitors. Chaos, Solitons & Fractals, 9(9), 1513–1517. Retrieved from https://www.sciencedirect.com/science/article/pii/S0960077997001318. doi: 10.1016/S0960-0779(97)00131-8

Cournot, A. A. (1897). Researches into the Mathematical Principles of the Theory of Wealth, 1º edn. New York: Macmillan Company.

Culda, L. C., Kaslik, E., & Neam¸tu, M. (2022). Stability and bifurcations in a general Cournot duopoly model with distributed time delays, Chaos, Solitons & Fractals, 162, 112424. Retrieved from https://www.sciencedirect.com/science/article/pii/S0960077922006348?via%3Dihub. doi: 10.1016/j.chaos.2022.112424

Diethelm, K. A. (2010). The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type. New York: Springer.

Gremaud, A. P., Montoro Filho, A. F., Lanzana, A. E. T., Luque, C. A., Pinho, C. M., Alves, D. C. de O., et al. (2003). Manual de economia. São Paulo: Saraiva.

Luìs, R, Rodrigues, E. (2017). Local stability in 3d discrete dynamical systems: application to a ricker competition model. Discrete Dynamics in Nature and Society, 1(16), 1–15. Retrieved from: https://www.hindawi.com/journals/ddns/2017/6186354/. doi: 10.1155/2017/6186354

Martin, S. (1993). Endogenous Firm Efficiency in a Cournot Principal-Agent Model. Journal of Economic Theory, 159(2), 445–450. Retrieved from https://www.sciencedirect.com/science/article/pii/S0022053183710288?via%3Dihub. doi: 10.1006/jeth.1993.1028

Zibiani, E. (2015). Estabilidade para equações discretas autônomas (Dissertação de mestrado). Universidade Estadual Paulista - UNESP, São Paulo, SP, Brasil. Retrieved from https://repositorio.unesp.br/handle/11449/131982.

Downloads

Published

2023-12-01

How to Cite

De Cezaro, A., & Correa, M. M. (2023). Fractional calculus applied to the Cournot-type adjustment model. Ciência E Natura, 45(esp. 3), e73724. https://doi.org/10.5902/2179460X73724