Modeling the effect of memory on the propagation of fake news between two populations that share information

Authors

DOI:

https://doi.org/10.5902/2179460X89849

Keywords:

Fake news, Mathematical modeling, Fractional derivatives, Memory, Interacting populations

Abstract

The dissemination of information can have a huge impact on public opinion, especially if it is false (fake news). In this work, we propose and analyze a reinterpretation of the SIR model that takes into account the effect of memory on the dynamics of fake news diffusion, resulting from use of fractional derivatives, between two distinct population groups. From a theoretical point of view, we will show that the proposed model is well-posed. Furthermore, we will present simulated scenarios showing that the presence of memory reduces the proportion and propagation time of fake news in both populations that interact. Furthermore, we show numerically that the inverse of the rigidity radius cannot be used as a measure of the rate at which fake news disappears.

Downloads

Download data is not yet available.

Author Biographies

Adriano De Cezaro, Universidade Federal do Rio Grande

PhD in Mathematics from the National Institute of Pure and Applied Mathematics (2010)

Fabiana Travessini De Cezaro, Universidade Federal do Rio Grande

PhD in Mathemtics and currently Associated Prof. at Institute of Mathematics, Statistics and Physicas at Federal University of Rio Grande. 

Luverci do Nascimento Ferreira, Federal University of Rio Grande

Master in Mathematics from University of Brasilia. Prof. of Mathematics at Institute of Mathematics, Statistics and Physics at Federal Univerisity of Rio Grande.

References

Allen, L. J. S., Bolker, B. M., Lou, Y., & Nevai, A. L. (2007). Asymptotic profiles of the steady states for an sis epidemic patch model. SIAM Journal on Applied Mathematics, 67(5):1283–1309.

Almeida, R. (2018). Analysis of a fractional seir model with treatment. Applied Mathematics Letters, 84:56–62.

D’Ambrosio, R., D´ıaz de Alba, P., Giordano, G., & Paternoster, B. (2022). A Modified SEIR Model: Stiffness Analysis and Application to the Diffusion of Fake News. Computational Science and Its Applications Proceedings- ICCSA 2022, Malaga, Spain, 22.

Diethelm, K. A. (2010). The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type. Springer.

Diethelm, K. A. (2013). A fractional calculus based model for the simulation of an outbreak of dengue fever. Nonlinear Dynamics, 71:613–619.

D’Ambrosio, R., Giordano, G., Mottola, S., & Paternoster, B. (2021). Stiffness analysis to predict the spread out of fake information. Future Internet, 13(9).

D’Ambrosio, R., Mottola, S., & Paternoster, B. (2020). A short review of some mathematical methods to detect fake news. International Journal of Circuits, Systems and Signal Processing, 14(2):255–265.

Garrappa, R. (2015). Trapezoidal methods for fractional differential equations: Theoretical and computational aspects. Mathematics and Computers in Simulation,110:96–112.

Lin, W. (2007). Global existence theory and chaos control of fractional differential equations. J.Math. Anal. Appl, 332(1):709–726.

Mahmoud, H. (2020). A model for the spreading of fake news. Journal of Applied Probability, 57(1):332–342.

Travessini De Cezaro, F., Nascimento Ferreira, L., & De Cezaro, A. (2023). On a model for the fake news diffusion between two interacting populations. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, 10(1):010077–1.

Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146-1151.

Downloads

Published

2024-12-20

How to Cite

De Cezaro, A., De Cezaro, F. T., & Ferreira, L. do N. (2024). Modeling the effect of memory on the propagation of fake news between two populations that share information. Ciência E Natura, 47(esp. 1), e89849 . https://doi.org/10.5902/2179460X89849