The asymptotic homogenization method applied to the elastostatic model of functionally graded microperiodic Euler-Bernoulli beams

Authors

DOI:

https://doi.org/10.5902/2179460X90550

Keywords:

Euler-Bernoulli beam, Asymptotic homogenization method, Formal asymptotic solution, Homogenized and local problems

Abstract

This work presents the application of the asymptotic homogenization method to a problem which models the mechanical equilibrium of functionally graded microperiodic Euler-Bernoulli beams clamped at both ends and subjected to a microperiodic distributed load. The five-term formal asymptotic solution is obtained in terms of the solution of the homogenized problem and the periodic solutions of the local problems, for whose existence a new result is presented. Analytical expressions for the homogenized and local solutions are provided. The exact solution of the problem, which is seldom available, is also provided for comparison purposes.

Downloads

Download data is not yet available.

Author Biographies

Douglas Machado da Silva, Universidade Federal de Pelotas

Master's degree in mathematical modeling.

Leslie Darien Pérez Fernández, Universidade Federal de Pelotas

Ph.D. in Mathematics.

Alexandre Molter, Universidade Federal de Pelotas

Ph.D. in Mechanical Engineering and a postdoctoral fellowship.

Julián Bravo Castillero, Universidad Nacional Autónoma de México

PhD in Mathematics.

References

Bakhvalov, N. & Panasenko, G. (1989). Homogenisation: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Material. (MASS Series, 1st ed.). Springer Netherlands.

Bensoussan, A., Lions, J., & Papanicolau, G. (1978). Asymptotic Analysis for Periodic Structures. (MAEE series, 5th vol.). North Holland.

Ciouranescu, D. & Donato, P. (2000). An Introduction to Homogenization. (17th vol.). Oxford University Press.

Huang, Z., Xing, Y., & Gao, Y. (2020). A two-scale asymptotic expansion method for periodic composite Euler beams. Composite Structures, 241:112033.

Rao, S. S. (2016). Mechanical Vibrations. (6th ed.). Harlow: Pearson.

Silva, D. M., P´erez-Fern´andez, L. D., Molter, A., & Bravo-Castillero, J. (2023). M´etodo de homogeneizac¸ ˜ao assint´otica aplicado ao modelo de vigas de Euler-Bernoulli est´atico. Anais da Jornada de Matem´atica e Matem´atica Aplicada. S˜ao Paulo, SP, Brazil, 4.

Tartar, L. (2009). The General Theory of Homogenization: A Personalized Introduction. UMILN. (UMILN series, 7th vol.). Springer.

Torquato, S. (2002). Random Heterogeneus Materials: Microstructure and Macroscopic properties. (IAM series, 16th ed.). Springer

Downloads

Published

2025-02-14

How to Cite

Silva, D. M. da, Pérez Fernández, L. D., Molter, A., & Castillero, J. B. (2025). The asymptotic homogenization method applied to the elastostatic model of functionally graded microperiodic Euler-Bernoulli beams. Ciência E Natura, 47(esp. 1). https://doi.org/10.5902/2179460X90550

Issue

Section

IV Jornada de Matematica e Matematica aplicada UFSM

Most read articles by the same author(s)