Wind meandering phenomenon and autocorrelation function calculated with base on the pollutants concentration simulated by the 3D-GILTT transient model

Authors

DOI:

https://doi.org/10.5902/2179460X47026

Keywords:

Pollutants dispersion, Advection-diffusion equation, Low wind, Wind meandering, Mathematical modeling

Abstract

The aim of this work is to present a pollutants dispersion transient model in low wind conditions to simulate the behavior of the pollutants plume in the atmosphere, considering in the model the u e v horizontal wind components simulated by the LES-PALM model. The dispersion model is based in the advection-diffusion equation and represent by this methodology the wind meandering phenomenon. The Generalized Integral Laplace Transform Technique in three dimensions (3D- GILTT) solves the transient advection-diffusion equation. The data utilized to initialize the simulations are data of the low wind INEL (Idaho National Engineering Laboratory) experiment accomplished in EUA. The results show that the dispersion model reproduces the wind meandering phenomenon, in other words, the autocorrelation function of the concentration simulated over an hour presents the negative lobule, similarly to observed lobules in the u and v wind components. Therefore, the model simulates the pollutants plume in a satisfactory way and can be used to air quality regulatory applications in low wind and wind meandering conditions.

Downloads

Download data is not yet available.

Author Biographies

Viliam Cardoso da Silveira, Universidade Federal de Pelotas, Pelotas, RS

Doutor em Meteorologia, Universidade Federal de Pelotas, PPGMMat

Daniela Buske, Universidade Federal de Pelotas, Pelotas, RS

Doutora em Engenharia Mecânica, Universidade Federal de Pelotas, PPGMMat

Régis Sperotto de Quadros, Universidade Federal de Pelotas, Pelotas, RS

Doutor em Matemática Aplicada, Universidade Federal de Pelotas, PPGMMat

Glênio Aguiar Gonçalves, Universidade Federal de Pelotas, Pelotas, RS

Doutorado em Engenharia Mecânica, Universidade Federal de Pelotas, PPGMMat

Guilherme Jahnecke Weymar, Universidade Federal de Pelotas, Pelotas, RS

Doutorado em Engenharia Mecânica, Universidade Federal de Pelotas, PPGMMat

References

ALVES, I. P.; DEGRAZIA, G. A.; BUSKE, D.; VILHENA, M. T.; ACEVEDO, O. C. Derivation of an eddy diffusivity coefficient on source distance for a shear dominated planetary boundary layer. Physica A (Print), v. 1, p. 1-10, 2012.

ANFOSSI, D.; OETTL, D.; DEGRAZIA, G.; GOULART, A. An analysis of sonic anemometer observations in low wind speed conditions. Boundary-Layer Meteorology, v. 114, p. 179-203, 2005.

ARYA, P. Modeling and parameterization of near-source diffusion in weak winds. Journal Meteorological Applications, v. 34, p. 1112-1122, 1995.

BATES, D. M.; WATTS, D. G. Nonlinear Regression Analysis and Its Applications. New York: John Wiley & Sons, 1988. 90 p.

BELJAARS, A. C. M. The parameterization of surface fluxes in large-scale models under free convection. Quarterly Journal of the Royal Meteorological Society, v. 121, p. 255-270, 1994.

BLACKADAR, A. K. Turbulence and diffusion in the atmosphere: lectures in Environmental Sciences. Springer-Verlag, 1997.

BUSKE, D.; VILHENA, M. T.; MOREIRA, D. M.; TIRABASSI, T. Simulation of pollutant dispersion for low wind conditions in stable and convective planetary boundary layer. Atmospheric Environment, v. 41, p. 5496-5501, 2007.

BUSKE, D.; VILHENA, M. T.; TIRABASSI, T.; BODMANN, B. Air pollution steady-state advection- diffusion equation: the general three-dimensional solution. Journal of Environmental Protection (Print), v. 3, p. 1124-1134, 2012.

DEGRAZIA, G. A.; VILHENA, M. T.; MORAES, O. L. L. An algebraic expression for the eddy diffusivities in the stable boundary layer: a description of near-source diffusion. Il Nuovo Cimento, v. 19C, p. 399-403, 1996.

Departamento de computação e matemática. Resolução de sistemas não lineares. Unesp Bauru, 2015. Acessado em 28 set 2015. Disponível em: http://wwwp.fc.unesp.br/~adriana/Numerico/ SNLinear.pdf.

DUDHIA, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of the Atmospheric Sciences, v. 46, p. 3077-3107, 1989.

DYER, A. J.; HICKS, B. B. Flux-gradient relationships in the constant flux layer. Quarterly Journal of the Royal Meteorological Society, v. 96, p. 715-721, 1970.

FRENKIEL, F. N. Turbulent diffusion: mean concentration distribution in a flow field of homogeneous turbulence. Advances in Applied Mechanics, v. 3, p. 61-107, 1953.

GRENIER, H.; BRETHERTON, C. S. A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review, v. 129, p. 357-377, 2001.

HONG, S.; DUDHIA, J.; CHEN, S. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Monthly Weather Review, v. 132, p. 103-120, 2004.

KAIN, J. The kain-fritsch convective parameterization: An update. Journal of Applied Meteorology, v. 43, p. 170-181, 2004.

MLAWER, E. J.; TAUBMAN, S. J.; BROWN, P. D.; IACONO, M. J. Radiative transfer for inhomogeneous atmospheres: Rrtm, a validated correlated-k model for the longwave. Journal of Geophysical Research, v. 102, p. 16,663-16,682, 1997.

MOOR, L. P.; DEGRAZIA, G. A.; STEFANELLO, M. B.; MORTARINI, L.; ACEVEDO, O. C.; MALDA- NER, S.; SZINVELSKI, C. R. P.; ROBERTI, D. R.; BULIGON, L.; ANFOSSI, D. Proposal of a new autocorrelation function in low wind speed conditions. Physica A, v. 438, p. 286-292, 2015.

MOREIRA, D. M.; VILHENA, M. T.; BUSKE, D.; TIRABASSI, T. The state-of-art of the giltt method to simulate pollutant dispersion in the atmosphere. Atmospheric Research, v. 92, p. 1-17, 2009.

MORTARINI, L.; ANFOSSI, D. Proposal of an empirical velocity spectrum formula in low-wind speed conditions. Quarterly Journal of the Royal Meteorological Society, v. 141, p. 85-97, 2015.

MORTARINI, L.; FERRERO, E.; FALABINO, S.; CASTELI, S. T.; RICHIARDONE, R.; ANFOSSI, D. Low-frequency processes and turbulence structure in a perturbed boundary layer. Quarterly Journal of the Royal Meteorological Society, v. 139, p. 1059-1072, 2013.

PANOFSKY, H. A.; DUTTON, J. A. Atmospheric Turbulence. New York: John Wiley & Sons, 1984.

PAULSON, C. A. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. Journal of Applied Meteorology, v. 9, p. 857-861, 1970.

RAASCH, S. PALM Overview. Institut für Meteorologie und Klimatologie, Leibniz Universität Hannover, 2015. Acessado em 15 jul 2017. Disponível em: https://palm.muk.uni-hannover.de/trac/wiki/ doc/tut/tec/overview.

SAGENDORF, J. F.; DICKSON, C. R. Diffusion under low wind-speed, inversion conditions. Idaho Falls, Idaho, 1974. Technical Memorandum ERL ARL-52, 89 p. Acesso em 15 jul. 2017. Disponível em: https://www.arl.noaa.gov/documents/reports/ARL-52.pdf.

STROUD, A. H.; SECREST, D. Gaussian quadrature formulas. Englewood Cliffs: N. J., Prentice Hall Inc., 1996.

SZINVELSKI, C. R. P.; DEGRAZIA, G. A.; BULIGON, L.; MOOR, L. Dedução da equação da variança espacial lateral para uma nova formulação da função de autocorrelação lagrangiana. Ciência e Natura, Edição Especial, p. 187-190, 2013.

TEWARI, M.; CHEN, F.; WANG, W.; DUDHIA, J.; MITCHELL, M. A. L. K.; EK, M.; GAYNO, G.; WEGIEL, J.; CUENCA, R. H. Implementation and verification of the unified noah land surface model in the wrf model. 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, 2004.

WEBB, E. K. Profile relationships: the log-linear range, and extension to strong stability. Quarterly Journal of the Royal Meteorological Society, v. 96, p. 67-90, 1970.

ZHANG, D.; ANTHES, R. A. A high-resolution model of the planetary boundary layer - sensitivity tests and comparisons with sesame-79 data. Journal of Applied Meteorology, v. 21, p. 1594-1609, 1982.

Published

2020-08-28

How to Cite

Silveira, V. C. da, Buske, D., Quadros, R. S. de, Gonçalves, G. A., & Weymar, G. J. (2020). Wind meandering phenomenon and autocorrelation function calculated with base on the pollutants concentration simulated by the 3D-GILTT transient model. Ciência E Natura, 42, e28. https://doi.org/10.5902/2179460X47026

Most read articles by the same author(s)

1 2 3 4 > >>