Temporal stability of stratifications using different dendrometric variables and geostatistical interpolation

Autori

DOI:

https://doi.org/10.5902/1980509843274

Parole chiave:

Stratified random sampling, Eucalyptus, Forest inventory, Forest management

Abstract

Stratifying a forest results in more precise and cheaper inventories. This study aimed to select the stratifying variable that estimates more precise and stable inventory over the years for a eucalyptus plantation in Minas Gerais state, Brazil. The continuous forest inventory was performed annually from 2.7 to 6.8 years, and based on the field measurements, arithmetic mean diameter (d), height (h), dominant height (Hdom), basal area (G), volume (V), and mean annual increment in volume (MAI) were calculated. Semivariograms were generated and the exponential, spherical and Gaussian models were fit for each stratifying variable for each measurement date. The models were assessed by the reduced mean error and its deviation, being the exponential model selected. Maps showing the spatial distribution of all variables were generated for each measurement age, using ordinary kriging. Next, the study area was divided in four strata based on each stratifying variable for each measurement age. The stability of each stratifying variables for each measurement age were assessed by: 1) coincident strata area; 2) stability of total strata area; 3) plot permanency on each stratum; and 4) inventory error using stratified random sampling procedures. All variables in all ages presented spatial dependence structure. G and Hdom were the stratifying variables that generated the most and the least coincident strata area over the years, respectively. G and height (h and Hdom) were the stratifying variables yielding the least and most plot stratum changes, respectively. The same trend was observed for the total strata area stability. Stratifying based on MAI and V yielded the smaller inventory error, and h and Hdom yielded the largest. G was selected as the best stratifying variable because it yielded small inventory errors and was the most stable variable in terms of coincident strata area, total strata area and plot stratum changes over the years.

Downloads

I dati di download non sono ancora disponibili.

Biografie autore

Aliny Aparecida dos Reis, Universidade Estadual de Campinas, Campinas, SP

Forestry Engineer, Dr., Postdoctoral Researcher, Núcleo Interdisciplinar de Planejamento Energético, Universidade Estadual de Campinas, Rua Cora Coralina, 330, CEP 13083-896, Campinas (SP), Brazil.

Andressa Ribeiro, Universidade Federal do Piauí, Bom Jesus, PI

Forestry Engineer, Dr., Professor of Universidade Federal do Piauí, Av. Manoel Gracindo, Km 01, CEP 64900-000, Bom Jesus (PI), Brazil.

Rafaella Carvalho Mayrinck, University of Saskatchewan, Saskatoon, SK

Forestry Engineer, Master’s degree, PhD candidate of University of Saskatchewan, Campus Drive, 51, S7N 5A8, Saskatoon (SK), Canada.

José Marcio de Mello, Universidade Federal de Lavras, Lavras, MG

Forestry Engineer, Dr., Professor of Departamento de Ciências Florestais, Universidade Federal de Lavras, Caixa Postal 3037, CEP 37200-900, Lavras (MG), Brasil.

Anderson Pedro Bernardina Batista, Instituto Federal do Amapá, Laranjal do Jari, AP

Forestry Engineer, Dr., Professor of Instituto Federal do Amapá, Rua Nilo Peçanha, 1263, CEP 68920-000, Laranjal do Jari (AP), Brazil.

Antonio Carlos Ferraz Filho, Universidade Federal do Piauí, Bom Jesus, PI

Forestry Engineer, Dr., Professor of Universidade Federal do Piauí, Av. Manoel Gracindo, Km 01, CEP 64900-000, Bom Jesus (PI), Brazil.

Riferimenti bibliografici

ALVARENGA, L. H. V. et al. Desempenho da estratificação em um fragmento de cerrado stricto sensu utilizando interpolador geoestatístico. Cerne, Lavras, v. 18, n. 4, p. 675-681, out./dez. 2012.

ASSIS, A. L. et al. Development of a sampling strategy for young stands of Eucalyptus sp. using geostatistics. Cerne, Lavras, v. 15, n. 2, p. 166-173, abr./jun. 2009.

ASSMANN, E. The principles of forest yield study. Oxford: Pergamon Press, 1970.

BATISTA, J. L. F.; COUTO, H. T. Z.; SILVA FILHO, D. F. Quantificação dos recursos florestais: árvores, arvoredos e florestas. São Paulo: Oficina de Textos, 2014. 384 p.

BOGNOLA, I. A. et al. Modelagem uni e bivariada da variabilidade espacial de rendimento de Pinus taeda L. Floresta, Curitiba, v. 38, n. 2, abr./jun. 2008.

CARVALHO, S. P. C. et al. Predição do volume de árvores integrando Lidar e geoestatística. Scientia Forestalis, Piracicaba, v. 43, n. 107, p. 627-637, set. 2015.

CRESSIE, A. G. Statistics for spatial data. 2nd ed. rev. New York: John Wiley and Sons, 1993. 928 p.

ENVIRONMENTAL SYSTEMS RESEARCH INSTITUTE. ArcGIS Desktop: Release 10.1. Redlands, 2010.

GUEDES, I. C. de L. et al. Continuidade espacial de características dendrométricas em povoamentos clonais de Eucalyptus sp. avaliada ao longo do tempo. Cerne, Lavras, v. 21, n. 4, p. 527-534, out./dec. 2015.

GUEDES, I. C. de L. et al. Técnicas geoestatísticas e interpoladores espaciais na estratificação de povoamentos de Eucalyptus sp. Ciência Florestal, Santa Maria, v. 22, n. 3, p. 541-550, jul./set. 2012.

ISAAKS, E. H.; SRIVASTAVA, R. M. Applied geostatistics. Oxford: Oxford University, 1989. 561 p.

KANEGAE JÚNIOR, H. et al. Avaliação da continuidade espacial de características dendrométricas em diferentes idades de povoamentos clonais de Eucalyptus sp. Revista Árvore, Viçosa, MG, v. 31, n. 5, p. 859-866, set./out. 2007.

KANEGAE JÚNIOR, H. et al. Avaliação de interpoladores estatísticos e determinísticos como instrumento de estratificação de povoamentos clonais de Eucalyptus sp. Cerne, Lavras, v. 12, n. 2, p. 123-136, abr./jun. 2006.

LEAL, F. A.; MATRICARDI, E. A. T.; MIGUEL, E. P. Interpolador geoestatístico para estimar volume num povoamento de Eucalyptus urophylla, em Rio Verde/Goiás. Nucleus, Ituverava, v. 11, n. 1, abr. 2014.

LUNDGREN, W. J. C.; SILVA, J. A. A.; FERREIRA, R. L. C. Estimação de volume de madeira de eucalipto por cokrigagem, krigagem e regressão. Cerne, Lavras, v. 21, n. 2, p. 243-250, abr./jun. 2015.

MELLO, J. M. et al. Métodos de amostragem e geoestatística para estimativa do número de fustes e volume em plantios de Eucalyptus grandis. Floresta, Curitiba, v. 39, n. 1, p. 157-166, jan./mar. 2009.

MENG, Q.; CIESZEWSKI, C.; MADDEN, M. Large area forest inventory using Landsat ETM+: A geostatistical approach. ISPRS Journal of Photogrammetry and Remote Sensing, Amsterdam, v. 64, n. 1, p. 27-36, jan. 2009.

OLIVEIRA, I. M. S. D. et al. Remote sensing and geostatistics applied to post-stratification of eucalyptus stands. Floresta e Ambiente, Seropédica, v. 25, n. 3, e20160586, jul. 2018.

PELISSARI, A. L. et al. Geoestatística aplicada ao manejo de povoamentos florestais de teca, em períodos pré-desbaste seletivo, no estado do Mato Grosso. Revista Brasileira de Biometria, São Paulo, v. 32, n. 3, p. 430-444, jul./set. 2014.

R CORE TEAM. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2016. Available at: http://www.R-project.org.

RAIMUNDO, M. R. Estratificação no inventário florestal contínuo utilizando geoestatística. 2015. Dissertação (Mestrado em Engenharia Florestal) - Universidade Federal de Lavras, Lavras, 2015.

RAIMUNDO, M. R. et al. Geostatistics applied to growth estimates in continuous forest inventories. Forest Science, Bethesda, v. 63, n. 1, p. 29-38, feb. 2017.

REIS, A. A. et al. Estratificação em cerrado sensu stricto a partir de imagens de sensoriamento remoto e técnicas geoestatísticas. Scientia Forestalis, Piracicaba, v. 43, n. 106, p. 377-386, jun. 2015.

RIBEIRO JÚNIOR, P. J.; DIGGLE, P. J. GeoR: a package for geostatistical analysis. R-News, [s. l.], v. 1, n. 2, p. 15-18, 2001.

SCHULTZ, E. et al. A Landsat stand basal area classification suitable for automating stratification of forest into statistically efficient strata. In: FIRST INTERNATIONAL CONFERENCE ON OBJECT-BASED

IMAGE ANALYSIS, Salzburg. Proceedings [...] Salzburg: International Society for Photogrammetry and Remote Sensing, 2006. v. 36. p. C42.

SCOLFORO, H. F. et al. A. Spatial interpolators for improving the mapping of carbon stock of the arboreal vegetation in Brazilian biomes of Atlantic forest and Savanna. Forest Ecology and Management, Amsterdam, v. 376, p. 24-35, sep. 2016.

SILVA, S. T. et al. Uso de imagens de sensoriamento remoto para estratificação do cerrado em inventários florestais. Pesquisa Florestal Brasileira, Colombo, v. 34, n. 80, p. 337-343, out./dez. 2014.

SILVEIRA, E. M. O. et al. Pre-stratified modelling plus residuals kriging reduces the uncertainty of aboveground biomass estimation and spatial distribution in heterogeneous savannas and forest environments. Forest Ecology and Management, Amsterdam, v. 45, n. 1, p. 445, 96-109, aug. 2019.

SKOVSGAARD, J. P.; VANCLAY, J. K. Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry, Oxford, v. 81, n. 1, p. 13-31, jan. 2008.

ZECH, D. F. et al. Use of spatial interpolators for statistic stratification of Pinus taeda. Scientia Forestalis, Piracicaba, v. 46, n. 117, p. 87-96, mar. 2018.

##submission.downloads##

Pubblicato

2022-03-25

Come citare

Reis, A. A. dos, Ribeiro, A., Mayrinck, R. C., Mello, J. M. de, Batista, A. P. B., & Ferraz Filho, A. C. (2022). Temporal stability of stratifications using different dendrometric variables and geostatistical interpolation. Ciência Florestal, 32(1), 102–121. https://doi.org/10.5902/1980509843274

Fascicolo

Sezione

Artigos

Puoi leggere altri articoli dello stesso autore/i