Carbon contents in Caatinga forest species
DOI:
https://doi.org/10.5902/1980509842456Keywords:
Carbon concentration, Carbon sequestration, Tropical Dry Forest, Leaf C content, Stem C contentAbstract
This study aimed to quantify the carbon contents in biomass reservoirs of different species in a Tropical Dry Forest located in Northeast, Brazil. We developed a previous floristic and phytosociological study and selected the nine highest absolute density (AD) species of the fragment, representing 87% of the fragment AD. We sampled the leaves and stem tissues of each species for carbon content determination. As result, the leaf C content differed between the species. The C leaf content ranged between 448.0 and 454.3 g C per kg of dry biomass. The C stem content varied between the species from 451.4 to 453.1 g C per kg of dry biomass. Our results suggest the use of a species-specific biomass-carbon conversion factor in Caatinga, as an alternative to the 50% factor recommended by the IPCC. This research reveals that the use of the factor recommended by the IPCC overestimates C stocks in Caatinga. Further studies are encouraged to confirm this result.
Downloads
References
AGÊNCIA PERNAMBUCANA DE ÁGUAS E CLIMA. APAC. Recife, 2019. Disponível em: http://www.apac.pe.gov.br/meteorologia/monitoramento-pluvio.php. Acesso em: 07 dez. 2019.
ALVARES, C. A. et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, Berlin, v. 22, p. 1-18, 2003. DOI: 10.1127/0941-2948/2013/0507
BERT, D.; DANJON, F. Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.). Forest Ecology and Management, Amsterdam, v. 222, n. 1/3, p. 279-295, 2006.
BROWN, M. B.; FORSYTHE, A. B. Robust tests for the equality of variances. Journal of the American Statistical Association, New York, v. 69, p. 364-367, 1974.
BROWN, S.; LUGO, A. E. The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica, Hoboken, v. 14, p. 161-187, 1982.
DALLAGNOL, F. S. et al. Teores de carbono de cinco espécies florestais e seus compartimentos. Floresta e Ambiente, Seropédica, v. 18, n. 4, p. 410-416, 2012.
EMBRAPA. Sistema Brasileiro de Classificação de Solos. 5. ed. Brasília, 2018. 590 p.
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories. [S. l.], 2006. v. 4. 83 p. Disponível em: https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html. Acesso em: 17 mar. 2021.
LANA, M. D. et al. Carbon Content in Shrub-tree Species of the Caatinga. Floresta e Ambiente, Seropédica, v. 26, n. 2, e20170617, 2019.
MA, S. et al. Variations and determinants of carbon content in plants: a global synthesis. Biogeosciences, [s. l.], v. 15, n. 3, p. 693-702, 2018.
MARTIN, A. R.; THOMAS, S. C. A reassessment of carbon content in tropical trees. PloS one, [s. l.], v. 6, n. 8, e23533, 2011.
MOURA, P. M. et al. Carbon and nutrient fluxes through litterfall at four succession stages of Caatinga dry forest in Northeastern Brazil. Nutrient Cycling in Agroecosystems, Dordrecht, v. 105, p. 25-38, 2016. DOI: https://doi.org/10.1007/s10705-016-9771-4.
PEARSON, T. R. H. et al. Greenhouse gas emissions form tropical forest degradation: an underestimated source. Carbon Balance Management, [s. l.], v. 12, p. 1-11, 2017. DOI: 10.1186/s13021-017-0072-2.
PENMAN, J. et al. (ed.). Good practice guidance for land use, land-use change and forestry. Kanagawa: IPCC, 2003.
POMPA-GARCIA, M. et al. Tissue carbon concentration of 175 Mexican forest species. iForest-Biogeosciences and Forestry, [s. l.], v. 10, n. 4, p. 754, 2017.
POORTER, H.; BERGKOTTE, M. Chemical composition of 24 wild species differing in relative growth rate, Plant Cell Environmental, [s. l.], v. 15, p. 221-229, 1992.
SANER, Philippe et al. Carbon stocks and fluxes in tropical lowland dipterocarp rainforests in Sabah, Malaysian Borneo. PloS one, [s. l.], v. 7, n. 1, e29642, 2012.
SANTOS, W. B. Vegetação lenhosa em altitudes no semiárido pernambucano: estrutura, potencial energético e fatores ambientais. 2018. Tese (Doutorado) - Universidade Federal Rural de Pernambuco, Recife, 2018.
SHAPIRO, S. S.; WILK, M. B. An analysis of variance test for normality (complete samples). Biometrika, [s. l.], v. 52, p. 591-611, 1965. DOI: 10.2307/2333709.
SOEPADMO, E. Tropical rain forests as carbon sinks. Chemosphere, Oxford, v. 27, p. 1025-1039, 1993.
THOMAS, S. C.; MALCZEWSKI, G. Wood carbon content of tree species in Eastern China: Interspecific variability and the importance of the volatile fraction. Journal of Environmental Management, London, v. 85, n. 3, p. 659-662, 2007.
USSIRI, D.; LAL, R. Introduction to global carbon cycling: an overview of the global carbon cycle. In: CARBON Sequestration for climate change mitigation and adaptation. [S. l.]: Springer, 2017. p. 61-76.
VASHUM, K. T.; JAYAKUMAR, S. Methods to estimate above-ground biomass and carbon stock in natural forests-a review. Journal of Ecosystem & Ecography, [s. l.], v. 2, p. 116-123. DOI: 10.4172 / 2157-7625.1000116.
VIEIRA, G. et al. Teores de carbono em espécies vegetais da caatinga e do cerrado. Revista Acadêmica Ciência Animal, [s. l.], v. 7, p. 145-155, 2009. DOI: 10.7213/cienciaanimal.v7i2.9846
WRIGHT, J. P. et al. Conventional functional classification schemes underestimate the relationship with ecosystem functioning. Ecology Letters, Oxford, v. 9, p. 111-120, 2006. DOI: https://doi.org/10.1111/j.1461-0248.2005.00850.x
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Ciência Florestal
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
A revista CIÊNCIA FLORESTAL reserva-se o direito de realizar, nos originais, alterações de ordens normativas, ortográficas e gramaticais, com vistas a manter o padrão escolar da língua, mas respeitando o estilo dos autores. As provas finais podem ou não ser enviadas aos autores.