LINEAR MIXED MODEL TO DESCRIBE THE BASAL AREA INCREMENT FOR INDIVUDUAL CEDRO (<i>Cedrela odorata </i>L.)TREES IN OCCIDENTAL AMAZON, BRAZIL

Authors

  • Thiago Augusto da Cunha Universidade Federal de Santa Maria, Santa Maria, RS
  • César Augusto Guimarães Finger
  • Paulo Renato Schneider

DOI:

https://doi.org/10.5902/1980509810557

Keywords:

Mixed model, generalized last-squares, tree-morphometry, competition indices.

Abstract

http://dx.doi.org/10.5902/1980509810557

Reliable growth data from trees are important to establish a rational forest management. Characteristics from trees, like the size, crown architecture and competition indices have been used to mathematically describe the increment efficiently when associated with them. However, the precise role of these effects in the growth-modeling destined to tropical trees needs to be further studied. Here we reconstructed the basal area increment (BAI) of individual Cedrelaodorata trees, sampled at Amazon forest, to develop a growth-model using potential-predictors like: (1) classical tree size; (2) morphometric data; (3) competition and (4) social position including liana loads. Despite the large variation in tree size and growth, we observed that these kinds of predictor variables described well the BAI in level of individual tree. The fitted mixed model achieve a high efficiency (R2=92.7 %) and predicted 3-years BAI over bark for trees of Cedrelaodorata ranging from 10 to 110 cm at diameter at breast height. Tree height, steam slenderness and crown formal demonstrated high influence in the BAI growth model and explaining most of the growth variance (Partial R2=87.2%). Competition variables had negative influence on the BAI, however, explained about 7% of the total variation. The introduction of a random parameter on the regressions model (mixed modelprocedure) has demonstrated a better significance approach to the data observed and showed more realistic predictions than the fixed model.

Downloads

Download data is not yet available.

References

ALDER, D.; SYNNOTT, T. J. Permanent sample plot techniques for mixed tropical forests.. Oxford Forestry Institute, 1992. 124 p. (Tropical Forestry Papers; n. 25),

ASSMANN, E. The Principles of Forest Yield Study. New York: Pergamon Press, 1970. 506 p.

BIGING, G. S.; DOBBERTIN, M. Evaluation of competition indices in individual tree growth models. Forest Science, Bethesda, v. 41, p. 360-377, 1995.

BUDHATHOKI, C. B.; LYNCH, T. B.; GULDIN, J. M. Nonlinear mixed modeling of basal area growth for shortleaf pine. Forest Ecology and Management, Amsterdam, v. 255, p. 3440-3446, 2008.

CALAMA, R.; MONTERO, G. Multilevel Linear Mixed Model for Tree Diameter Increment in Stone Pine (Pinus pinea): a calibrating approach. Silva Fennica, Helsinki, v. 39, p. 37-54, 2005.

CHOI, J. et al. A crown model for simulating long-term stand and gap dynamics in northen hardwood forests. Forest Ecology and Management, Amsterdam, v. 152, p. 235-258, 2001.

CUNHA, T. A. Modelagem do incremento de árvores individuais de Cedrela odorata L. na floresta amazônica. 2009. 89 p. Dissertação (Mestrado em Manejo Florestal) - Universidade Federal de Santa Maria, Santa Maria, 2009.

DAVIES, O.; POMMERENING, A. The contribution of structural indices to the modelling of Sitka spruce (Picea sitchensis) and birch (Betula spp.) crowns. Forest Ecology and Management, Amsterdam, v. 256, p. 68-77, 2008.

DAWKINS, H. C. Crown diameters: their relationship to bole diameter in tropical trees. Commonwealth Forest Review, Abingdon, v. 42, p. 318-333, 1963.

DURLO, M. A.; DENARDI, L. Morfometría de Cabralea canjerana, em mata secundária nativa do Rio Grande do Sul, Ciência florestal, Santa Maria, v. 8, p. 55-66, 1998.

DURLO, M. A.; MARCHIORI, J. N. C.; SPATHELF, P. Perspectivas do manejo florestal por árvores singulares, Ciência e Ambiente, Santa Maria, v. 20, p. 71-82, 2000.

ESBER, M. L. Crescimento de Cedrela fissilis (Vellozo) Mart. como subsídio para o manejo florestal sustentado de florestas nativas no Estado do Rio Grande do Sul. 2003. 88 p. Dissertação (Mestrado em Manejo Florestal) - Universidade Federal de Santa Maria, Santa Maria, 2003.

FOX, J. C., BI, H.; ADES, P. K. Modelling spatial dependence in an irregular natural forest, Silva Fennica, Helsinki, v. 42, p. 35-48, 2008.

FOX, J. C.; ADES, P. K.; BI, H. Stochastic structure and individual-tree growth models. Forest Ecology and Management, Amsterdam, v. 154, p. 261-276, 2001.

GONÇALVES, S.; MEDDAHI, N. Box-Cox transformation for realized volatility. Journal of Econometrics. doi: 10.1016/j.jeconom.2010.03.026. 2010.

GRAUEL, W. T.; PUTZ, F. E. Effects of lianas on growth and regeneration of Prioria copaifera in Darien, Panama. Forest Ecology and Management, Amsterdam, v. 190, p. 99-108, 2004.

HASENAUER, H.; MONSERUD, R. A. A crown ratio model for Austrian forests. Forest Ecology and management, Amsterdam, v. 84, p. 49-60, 1996.

HOLDRIDGE, L. R. Ecología basada en zonas de vida. San José: Instituto Interamericano de Ciencias Agrícolas, 1978.

HOLMES, M. J.; REED, D. D. Competition indices for mixed species Northern Hardwoods. Forest Science, Bethesda, v. 37, p. 1338-1349, 1991.

IMAC – INSTITUTO DE MEIO AMBIENTE DO ACRE. Atlas geográfico ambiental do Acre. IMAC, Rio Branco, 1991.

KAINER, K. A. et al. Liana loads and their association with Bertholletia excelsa fruit and nut production, diameter growth and crown attributes. Journal of Tropical Ecology, Winchelsea, v. 22, p. 147-154, 2006.

LADWIG, L. M.; MEINERS, S. J. Impacts of temperete lianas on tree growth in young deciduous forest. Forest Ecology and Management, Amsterdam, v. 259, p. 195-200, 2009.

LAPPI, J. A longitudinal analysis of height/diameter curves. Forest Science, Bethesda, v. 43, p. 555-570, 1997.

MCCRADY, R. L.; JOKELA, E. J. Canopy dynamics, light interception, and radiation use efficiency of selected loblolly pine families. Forest Science, Bethesda, v. 44, p. 64-72, 1998.

METCALF, C. E.; CLARK, J. S.; CLARK, D. A. Tree growth inference and prediction when the point of measurement changes: modelling around buttresses in tropical forests. Journal of Tropical Ecology, Winchelsea, v. 25, p. 1-12, 2008.

MITSUDA, Y.; ITO, S.; TAKATA, K. Effects of competitive and cooperative interaction among neighboring trees on tree growth in a naturally regenerated even-aged Larix sibirica Stand in considering height stratification. Journal of Forest Research, v. 7, p. 185-191, 2002.

MONSERUD, R.; STERBA, H. A basal area increment model for individual trees growing in even-and-uneven-aged forest stands in Austria. Forest Ecology and Management, Amsterdam, v. 80, p. 57-80, 1996.

PUKKALA, T.; KANGAS, J. A method for integrating risk and attitude toward risk into forest planning, Forest Science, Bethesda, v. 42, p. 198-205, 1996.

QUICKE, H. E.; MELDAHL, R. S.; KUSH, J. S. Basal area growth of individual trees: a model derived from a regional longleaf pine growth study. Forest Science, Bethesda, v. 40, p. 28-42, 1994.

RINN, F. TSAP-Win, Version 4.64, reference manual: Time Series Analysis and Presentation Dendrochronology and Related Applications. Heidelberg, 2003. 110 p.

SANCHEZ-GONZALES, M.; DEL RIO, M.; CAÑELLAS, I.; MONTERO, G. Distance independent tree diameter growth model for cork oak stands. Forest Ecology and Management, Amsterdam, v. 225, p. 262-270, 2006.

SAS/STAT. SAS Institute Inc., Cary, NC, 2007.

SILVA, R. P. da et al. Diameter increment and growth patterns for individual tree growing in Central Amazon, Brazil. Forest Ecology and Management, Amsterdam, v. 166, p. 295-301, 2002.

SINGER, J. Using SAS PROC MIXED to fit multilevel models, Hierarchical models, and Individual growth models. Journal of Education and Behavioral Statistics, v. 24, p. 323-355, 1998.

STERBA, H.; BLAB, A.; KATZENSTEINER, K. Adapting an individual tree growth model for Norway Spruce (Picea abies L. Karst.) in pure and mixed species stands. Forest Ecology and Management, Amsterdam, v. 159, p. 101-110, 2002.

STOKES, M. A., AND T. L. SMILEY. An Introduction to Tree-Ring Dating. Tucson: The University of Arizona Press, 1996. p. 73.

VANCLAY, J. K. Growth-models for tropical forests: a synthesis of models and methods. Forest Science, Bethesda, v. 41, p. 7-42, 1995.

VANCLAY, J. K. Modelling Forest Growth and Yield. Wallingford: CAB International, 1994. 380 p.

VANCLAY, J. K.; SKOVSGAARD, J. P. Evaluating forest growth models, Ecological Modeling, v. 98, p. 1-12, 1997.

WEST, P. W. Application of regression analysis to inventory data with measurements on successive occasions. Forest Ecology and Management, Amsterdam, v. 71, p. 227-234, 1995.

WYKOFF, W. R. A basal area increment model for individual conifers in northern Rocky mountains. Forest Science, Bethesda, v. 36, p. 1077-1104, 1990.

XIAO, Y.; JOKELA, E. J.,; WHITE, T. L. Species differences in crown structure and growth performance of juvenile loblolly and slash pine. Forest Ecology and Management, Amsterdam, v. 174, p. 295-313, 2003.

ZEE – ZONEAMENTO ECOLÓGICO-ECONÔMICO DO ACRE. Recursos Naturais e Meio Ambiente. Rio Branco: Secretaria de estado de Ciência, Tecnologia e Meio Ambiente, 2000.

Published

2013-08-30

How to Cite

Cunha, T. A. da, Finger, C. A. G., & Schneider, P. R. (2013). LINEAR MIXED MODEL TO DESCRIBE THE BASAL AREA INCREMENT FOR INDIVUDUAL CEDRO (<i>Cedrela odorata </i>L.)TREES IN OCCIDENTAL AMAZON, BRAZIL. Ciência Florestal, 23(3), 461–470. https://doi.org/10.5902/1980509810557

Issue

Section

Articles

Most read articles by the same author(s)

<< < 2 3 4 5 6 7 8 9 10 11 > >>