Imputation of data in analysis of variance in experiments in the Completely Randomized Design
DOI:
https://doi.org/10.5902/2179460X40447Keywords:
Missing Data, Imputation Methods, ANOVA, Analysis of Experimental DataAbstract
Unanticipated events often occur in the development of an experiment, especially in field experiments, often causing data loss. Through the present study, we sought to verify whether there is a difference in the result of the analysis of variance (ANOVA) test for unbalanced data in the Completely Randomized Design (DIC) when the inclusion of data obtained from the data imputation technique was performed of Predictive Average. Experiments were simulated in the DIC with 5 treatments and 10 repetitions, generating complete databases. From each database, 10% of the plots were removed and after the imputation method was applied, comparing the ANOVA results in each step. The imputation yielded acceptable results, but not better than those obtained when performing the specific ANOVA test for unbalanced data.
Downloads
References
ALARCÓN SA, DIAS CTS. Imputação de dados em experimentos com interação genótipo por ambiente: uma aplicação a dados de algodão. Revista Brasileira de Biometria. 2009;27(1):125-138.
BERGAMO GC, DIAS CTS, KRZANOWSKI WJ. Distribuition-free Multiple Imputation in Interaction matrix through singular value decomposition. Sciencia Agricola. Piracicaba. 2008;65(4):422-427.
CARGNELUTTI FILHO A,STORCK L. Estatísticas de avaliação da precisão experimental em ensaios de cultivares de milho. Pesquisa Agropecuária Brasileira. Brasília. 2007;42(1):17-24.
ENGELS JM, DIEHR P. Imputation of missing longitudinal data: a comparison of methods. Journal of Clinical Epidemiology. 2003; 56:968-976.
GINKEL JRV, KROONENBERG PM. Analysis of Variance of Multiply Imputed Data. Multivariate Behav Res. 2014; 49(1): 78–91.
IEMMA AF. Que hipóteses estatísticas testamos através do SAS em presença de caselas vazias. Scientia Agricola, Piracicaba. 1995;52(2):210-220.
LÚCIO AD, STORCK L. Parâmetros da precisão experimental das principais culturas anuais do Estado do Rio Grande do Sul. Santa Maria. Ciência Rural. 1997;27(3).
NUNES LN et al. Uso da imputação múltipla de dados faltantes: uma simulação utilizando dados epidemiológicos. Caderno Saúde Pública. Rio de Janeiro. 2009;25(2):268-278.
OLIVEIRA RLR. Imputação de médias para análise de estabilidade e adaptabilidade em experimentos conjuntos incompletos: uma aplicação em café Conilon [dissertation]. Viçosa: Universidade Federal de Viçosa (UFV); 2012. 61p.
PADOVANI CR. Delineamento de Experimentos. São Paulo: Cultura Acadêmica: Universidade Estadual Paulista, Pró-Reitoria de Graduação, 2014.
PIMENTEL GOMES F. Curso de estatística experimental. 13.ed. Piracicaba, São Paulo: Nobel 1990.
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 2017.
RStudio Team. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA. URL http://www.rstudio.com/. 2009 - 2017.
SANTOS LI, ALMEIDA MFF. Tratamento de Dados Faltantes: Uma avaliação de métodos de imputação de dados a partir do desempenho de um classificador Bayesiano. Anais do XIII Encontro Mineiro de Estatística, Diamantina: UFVJM, 2014.
SCHAFER JL, GRAHAM JW. Missing data: Our view of the state of the art. Psychological Methods. 2002;7(2):147-177.
SILVA MJC. Imputação múltipla: comparação e eficiência em experimentos multiambientais [dissertation]. Piracicaba: Escola Superior de Agricultura Luiz Queiroz (USP); 2012. 125p.
STORCK L. et al. Avaliação da precisão experimental em ensaios de competição de cultivares de soja. Lavras. Ciência Agropecuária. 2010;34(3):572-578.
ZHANG P. Multiple Imputation: Theory and Method. International Statistical Review. 2003;71(3):581-592.
Published
How to Cite
Issue
Section
License
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.