Potencial anti-inflamatório e antioxidante de nanopartículas de prata sintetizadas utilizando a nanoemulsão do óleo essencial de Cinnamomum verum

Autores

DOI:

https://doi.org/10.5902/2179460X88050

Palavras-chave:

Antioxidante, Trans-Cinamaldeído, Formulação

Resumo

Este estudo avaliou o perfil químico, a atividade antioxidante e anti-inflamatória, de forma inédita, de nanopartículas de prata (AgNPs) sintetizadas a partir da nanoemulsão de óleo essencial de Cinnamomum verum (NEO). Para a extração de óleo essencial (OE), utilizou-se a técnica de hidrodestilação e os constituintes químicos foram identificados por GC-MS. A atividade antioxidante foi avaliada pelo método de descoloração dos radicais ABTS e a atividade anti-inflamatória por desnaturação proteica. O constituinte majoritário do OE foi o trans-Cinamaldeído (82,12%). A banda máxima de RPS foi centrada em 420 nm, indicando o pico característico das AgNPs. A menor IC50 59,46 mg L-1 para atividade antioxidante foi obtida para AgNP pH 10. A IC50 que demonstrou o melhor resultado para atividade anti-inflamatória foi a do pH 9 com 0,3183 mg mL-1. Este estudo trouxe de forma inédita resultados para AgNPs de C. verum, mostrando-se eficiente na melhoria das atividades testadas neste estudo, demonstrando também o efeito d o pH sobre essas formulações.

Downloads

Não há dados estatísticos.

Biografia do Autor

Antonio Felipe Correa Lucas, Universidade Federal do Maranhão

Bachelor's degree in Industrial Chemistry (Federal University of Maranhão); Laboratory of Research and Application of Essential Oils (LOEPAV/UFMA)

Thamires de Jesus Teles Ribeiro, Universidade Federal do Maranhão

Bachelor's degree in Chemistry (Federal University of Maranhão); Laboratory of Research and
Application of Essential Oils (LOEPAV/UFMA)

Américo Pinheiro Neto, Universidade Federal do Maranhão

Bachelor's degree in Industrial Chemistry (Federal University of Maranhão); Laboratory of Research and Application of Essential Oils (LOEPAV/UFMA)

Victor Elias Mouchrek Filho, Universidade Federal do Maranhão

Full Professor at UFMA (Federal University of Maranhão); Laboratory of Research and Application of Essential Oils (LOEPAV/UFMA)

Gustavo Oliveira Everton, Universidade Federal do Maranhão

Master's Degree PPPGSA/UFMA: Biotechnology applied to health (Natural Products). Graduating in Chemical Engineering (UFMA), Industrial Chemist (UFMA) and Technician in Metallurgy and Materials (IFMA)

Referências

Başer, K. H. C., Demirci, B., Dekebo, A., Dagne, E. (2003). Essential oils of some Boswellia spp., myrrh and opopanax. Flavour and Fragrance Journal, 18(2), 153-156. doi: https://doi.org/10.1002/ffj.1166 DOI: https://doi.org/10.1002/ffj.1166

Campos, K. E., Diniz, Y. S., Cataneo, A. C., Faine, L. A., Alves, M. J. Q. F., Novelli, E. L. B. (2003). Hypoglycaemic and antioxidant effects of onion, Allium cepa: dietary onion addition, antioxidant activity and hypoglycaemic effects on diabetic rats. International journal of food sciences and nutrition, 54(3), 241-246. doi: https://doi.org/10.1080/09637480120092062 DOI: https://doi.org/10.1080/09637480120092062

Castro, C. C., da Silva, A. R. C., Franco, C. D. J. P., Siqueira, G. M., Cascaes, M. M., do Nascimento, L. D., Andrade, E. H. A. (2020). Caracterização química do óleo essencial das folhas, galhos e frutos de Cinnamomum verum J. Presl (Lauraceae). Brazilian Journal of Development, 6(6), 41320-41333. doi: https://doi.org/10.34117/bjdv6n6-609 DOI: https://doi.org/10.34117/bjdv6n6-609

Castro Guimarães, C., Ferreira, T. C., de Oliveira, R. C. F., Simioni, P. U., & Ugrinovich, L. A. (2017). Atividade antimicrobiana in vitro do extrato aquoso e do óleo essencial do alecrim (Rosmarinus officinalis L.) e do cravo-da-índia (Caryophyllus aromaticus L.) frente a cepas de Staphylococcus aureus e Escherichia coli. Revista Brasileira de Biociências, 15(2). https://seer.ufrgs.br/index.php/rbrasbioci/article/view/114623

Costa, E. V., Dutra, L. M., Salvador, M. J., Ribeiro, L. H. G., Gadelha, F. R., Carvalho, J. E. (2013). Chemical composition of the essential oils of Annona pickelii and Annona salzmannii (Annonaceae), and their antitumour and trypanocidal activities. Natural Product Research, 27(11), 997-1001. doi: https://doi.org/10.1080/14786419.2012.686913 DOI: https://doi.org/10.1080/14786419.2012.686913

Costa, J. S., Barroso, A. S., Mourão, R. H. V., da Silva, J. K. R., Maia, J. G. S., Figueiredo, P. L. B. (2020). Seasonal and antioxidant evaluation of essential oil from Eugenia uniflora L., curzerene-rich, thermally produced in situ. Biomolecules, 10(2), 328. doi: https://doi.org/10.3390/biom10020328 DOI: https://doi.org/10.3390/biom10020328

Erechim, U. C., Vanin, A. B. (2014). Produção, propriedades biológicas, antioxidantes e toxicidade do bioaromatizante obtido via esterificação enzimática do óleo essencial do cravo-da-índia. http://uricer.edu.br/cursos/arq_trabalhos_usuario/2877.pdf

Evren, A. R. I. N., Ebru, Ö. N. E. M., TABUR, M. A. (2021). Characterization of Myrrh Essential Oil wıth GC-MS and Investigation Antibacterıal Effects on Salmonella spp. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 16(1), 319-327. doi: https://doi.org/10.29233/sdufeffd.853138 DOI: https://doi.org/10.29233/sdufeffd.853138

Ferraz, R. P., Cardoso, G. M., da Silva, T. B., Fontes, J. E. D. N., Prata, A. P. D. N., Carvalho, A. A., Bezerra, D. P. (2013). Antitumour properties of the leaf essential oil of Xylopia frutescens Aubl.(Annonaceae). Food chemistry, 141(1), 196-200. doi: https://doi.org/10.1016/j.foodchem.2013.02.114 DOI: https://doi.org/10.1016/j.foodchem.2013.02.114

Figueiredo, P. L. B., Pinto, L. C., da Costa, J. S., da Silva, A. R. C., Mourão, R. H. V., Montenegro, R. C., Maia, J. G. S. (2019). Composition, antioxidant capacity and cytotoxic activity of Eugenia uniflora L. chemotype-oils from the Amazon. Journal of Ethnopharmacology, 232, 30-38. doi: https://doi.org/10.1016/j.jep.2018.12.011 DOI: https://doi.org/10.1016/j.jep.2018.12.011

Gandlevskiy, N., Viana, A. R., Druzian, G. T., Oliveira, D. K., Schuch, A. P., Barge, A., Cravotto, G., & Flores, E. M. M. (2025). Ultrasound-assisted green synthesis of silver nanoparticles using Ruta graveolens L. extract and antitumor evaluation. Ultrasonics Sonochemistry, 117, 107340. https://doi.org/10.1016/j.ultsonch.2025.107340 DOI: https://doi.org/10.1016/j.ultsonch.2025.107340

Govindarajan, M., Rajeswary, M., Senthilmurugan, S., Vijayan, P., Alharbi, N. S., Kadaikunnan, S., Benelli, G. (2018). Curzerene, trans-β-elemenone, and γ-elemene as effective larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus: toxicity on non-target aquatic predators. Environmental Science and Pollution Research, 25, 10272-10282. doi: https://doi.org/10.1007/s11356-017-8822-y DOI: https://doi.org/10.1007/s11356-017-8822-y

Gunawardena, D., Karunaweera, N., Lee, S., van Der Kooy, F., Harman, D. G., Raju, R., Münch, G. (2015). Anti-inflammatory activity of cinnamon (C. zeylanicum and C. cassia) extracts–identification of E-cinnamaldehyde and o-methoxy cinnamaldehyde as the most potent bioactive compounds. Food & function, 6(3), 910-919. doi: https://doi.org/10.1039/C4FO00680A DOI: https://doi.org/10.1039/C4FO00680A

Helou, G. M. R. (2018). Biossíntese de nanopartículas de prata utilizando cinnamomum zeylanicum em matriz de hidrogel para aplicação biomédica. https://repositorio.unifei.edu.br/jspui/handle/123456789/2427

Jakhetia, V., Patel, R., Khatri, P., Pahuja, N., Garg, S., Pandey, A., & Sharma, S. (2010). Cinnamon: a pharmacological review. Journal of advanced scientific research, 1(02), 19-23. https://sciensage.info/index.php/JASR/article/view/13

Jayaprakasha, G. K., Rao, L. J., Sakariah, K. K. (2002). Chemical composition of volatile oil from Cinnamomum zeylanicum buds. Zeitschrift für Naturforschung C, 57(11-12), 990-993. doi: https://doi.org/10.1515/znc-2002-11-1206 DOI: https://doi.org/10.1515/znc-2002-11-1206

Jonville, M. C., Kodja, H., Strasberg, D., Pichette, A., Ollivier, E., Frederich, M., ... Legault, J. (2011). Antiplasmodial, anti-inflammatory and cytotoxic activities of various plant extracts from the Mascarene Archipelago. Journal of ethnopharmacology, 136(3), 525-531. doi: https://doi.org/10.1016/j.jep.2010.06.013 DOI: https://doi.org/10.1016/j.jep.2010.06.013

Kumar, B., Yadav, P. R., Goel, H. C., Rizvi, M. (2009). Recent Developments In Cancer Therapy By The Use Of Nanotechnology. Digest Journal of Nanomaterials & Biostructures (DJNB), 4(1). https://www.chalcogen.ro/1-Kumar-Yadav-Goel.pdf

Latha, S., Selvamani, P., Prabha, T. (2021). Pharmacological uses of the plants belonging to the genus Commiphora. Cardiovascular & Hematological Agents in Medicinal Chemistry, 19(2), 101-117. doi: https://doi.org/10.2174/1871525718666200702125558 DOI: https://doi.org/10.2174/1871525718666200702125558

Lima, M. D. P., Zoghbi, M. D. G. B., Andrade, E. H. A., Silva, T. M. D., & Fernandes, C. S. (2005). Constituintes voláteis das folhas e dos galhos de Cinnamomum zeylanicum Blume (Lauraceae). Acta amazônica, 35, 363-366.V.N. doi: https://doi.org/10.1590/S0044-59672005000300009 DOI: https://doi.org/10.1590/S0044-59672005000300009

Liu, Y. C., Lin, L. H. (2004). New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods. Electrochemistry communications, 6(11), 1163-1168. doi: https://doi.org/10.1016/j.elecom.2004.09.010 DOI: https://doi.org/10.1016/j.elecom.2004.09.010

Madia, V. N., De Angelis, M., De Vita, D., Messore, A., De Leo, A., Ialongo, D., Costi, R. (2021). Investigation of Commiphora myrrha (Nees) Engl. oil and its main components for antiviral activity. Pharmaceuticals, 14(3), 243. doi: https://doi.org/10.3390/ph14030243 DOI: https://doi.org/10.3390/ph14030243

Marongiu, B., Piras, A., Porcedda, S., Scorciapino, A. (2005). Chemical composition of the essential oil and supercritical CO2 extract of Commiphora myrrha (Nees) Engl. and of Acorus calamus L. Journal of Agricultural and food chemistry, 53(20), 7939-7943. doi: https://doi.org/10.1021/jf051100x DOI: https://doi.org/10.1021/jf051100x

Massoud, A. M., El Ebiary, F. H., Abou-Gamra, M. M., Mohamed, G. F., Shaker, S. M. (2004). Evaluation of schistosomicidal activity of myrrh extract: parasitological and histological study. Journal of the Egyptian Society of Parasitology, 34(3 Suppl), 1051-1076. https://europepmc.org/article/med/15658062

Mathew, S., Abraham, T. E. (2006). Studies on the antioxidant activities of cinnamon (Cinnamomum verum) bark extracts, through various in vitro models. Food chemistry, 94(4), 520-528. doi: https://doi.org/10.1016/j.foodchem.2004.11.043 DOI: https://doi.org/10.1016/j.foodchem.2004.11.043

Mulfinger, L., Solomon, S. D., Bahadory, M., Jeyarajasingam, A. V., Rutkowsky, S. A., Boritz, C. (2007). Synthesis and study of silver nanoparticles. Journal of chemical education, 84(2), 322. doi: https://doi.org/10.1021/ed084p322 DOI: https://doi.org/10.1021/ed084p322

Nasrollahzadeh, M., Sajadi, S. M., Rostami-Vartooni, A., & Hussin, S. M. (2016). Green synthesis of CuO nanoparticles using aqueous extract of Thymus vulgaris L. leaves and their catalytic performance for N-arylation of indoles and amines. Journal of colloid and interface science, 466, 113-119. doi: https://doi.org/10.1016/j.jcis.2015.12.018 DOI: https://doi.org/10.1016/j.jcis.2015.12.018

Nunes, T. A. L., Santos, M. M., de Oliveira, M. S., de Sousa, J. M. S., Rodrigues, R. R. L., de Araujo Sousa, P. S., da Franca Rodrigues, K. A. (2021). Curzerene antileishmania activity: Effects on Leishmania amazonensis and possible action mechanisms. International Immunopharmacology, 100, 108130. doi: https://doi.org/10.1016/j.intimp.2021.108130 DOI: https://doi.org/10.1016/j.intimp.2021.108130

Pessoa, J. P. D. M., Oliveira, E. S. F. D., Teixeira, R. A. G., Lemos, C. L. S., Barros, N. F. D. (2016). Controle da dengue: os consensos produzidos por Agentes de Combate às Endemias e Agentes Comunitários de Saúde sobre as ações integradas. Ciência & Saúde Coletiva, 21, 2329-2338. doi: https://doi.org/10.1590/1413-81232015218.05462016 DOI: https://doi.org/10.1590/1413-81232015218.05462016

Pontiki, E., Hadjipavlou-Litina, D., Litinas, K., Geromichalos, G. (2014). Novel cinnamic acid derivatives as antioxidant and anticancer agents: Design, synthesis and modeling studies. Molecules, 19(7), 9655-9674. doi: https://doi.org/10.3390/molecules19079655 DOI: https://doi.org/10.3390/molecules19079655

Qasim, M., Chae, D. S., Lee, N. Y. (2020). Bioengineering strategies for bone and cartilage tissue regeneration using growth factors and stem cells. Journal of Biomedical Materials Research Part A, 108(3), 394-411. doi: https://doi.org/10.1002/jbm.a.36817 DOI: https://doi.org/10.1002/jbm.a.36817

Ranasinghe, P., Perera, S., Gunatilake, M., Abeywardene, E., Gunapala, N., Premakumara, S., ... & Katulanda, P. (2012). Effects of Cinnamomum zeylanicum (Ceylon cinnamon) on blood glucose and lipids in a diabetic and healthy rat model. Pharmacognosy research, 4(2), 73. doi: https://doi.org/10.4103%2F0974-8490.94719 DOI: https://doi.org/10.4103/0974-8490.94719

Rassaei, L., Sillanpää, M., French, R. W., Compton, R. G., & Marken, F. (2008). Arsenite determination in phosphate media at electroaggregated gold nanoparticle deposits. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 20(12), 1286-1292. doi: https://doi.org/10.1002/elan.200804226 DOI: https://doi.org/10.1002/elan.200804226

Rostami-Vartooni, A., Nasrollahzadeh, M., Alizadeh, M. (2016). Green synthesis of seashell supported silver nanoparticles using Bunium persicum seeds extract: application of the particles for catalytic reduction of organic dyes. Journal of colloid and interface science, 470, 268-275. doi; https://doi.org/10.1016/j.jcis.2016.02.060 DOI: https://doi.org/10.1016/j.jcis.2016.02.060

Sandmann, G., Dietz, H., Plieth, W. (2000). Preparation of silver nanoparticles on ITO surfaces by a double-pulse method. Journal of Electroanalytical Chemistry, 491(1-2), 78-86. doi: https://doi.org/10.1016/S0022-0728(00)00301-6 DOI: https://doi.org/10.1016/S0022-0728(00)00301-6

Santurio, D. F. (2015). Uso de óleos essenciais de especiarias para controle de coliformes em linguiça toscana (Doctoral dissertation, Universidade Federal de Santa Maria). http://repositorio.ufsm.br/handle/1/3409

Shan, B., Cai Yi-Zhong, Brooks, J. H. (2007). Corke. Antibacterial Prpertis And Major Bioactive Components Of Cinnamon Stick (Cinnamomum burmannii): Activity Against Foodborne Pathogenic Bacteria. Journal of Agricultural and Food Chemistry, 55, 5484-5490. doi: https://doi.org/10.1021/jf070424d

Shan, Y. et al., Antibacterial Properties and Major Bioactive Components of Cinnamon Stick (Cinnamomum burmannii): Activity against Foodborne Pathogenic Bacteria, Journal of Agricultural and Food Chemistry, 55, 5484-5490 (2007). doi: 10.1021/jf070424d.doi: https://doi.org/10.1021/jf070424d DOI: https://doi.org/10.1021/jf070424d

Shankar, S. S., Ahmad, A., Sastry, M. (2003). Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnology progress, 19(6), 1627-1631. doi: https://doi.org/10.1021/bp034070w DOI: https://doi.org/10.1021/bp034070w

Suryanti, V., Wibowo, F. R., Khotijah, S., Andalucki, N. (2018, March). Antioxidant activities of cinnamaldehyde derivatives. In IOP Conference Series: Materials Science and Engineering (Vol. 333, No. 1, p. 012077). IOP Publishing. doi: 10.1088/1757-899X/333/1/012077 DOI: https://doi.org/10.1088/1757-899X/333/1/012077

Tahir, K., Nazir, S., Li, B., Khan, A. U., Khan, Z. U. H., Ahmad, A., Zhao, Y. (2015). Enhanced visible light photocatalytic inactivation of Escherichia coli using silver nanoparticles as photocatalyst. Journal of Photochemistry and Photobiology B: Biology, 153, 261-266. doi: https://doi.org/10.1016/j.jphotobiol.2015.09.015 DOI: https://doi.org/10.1016/j.jphotobiol.2015.09.015

Tan, Y., Wang, Y., Jiang, L., Zhu, D. (2002). Thiosalicylic acid-functionalized silver nanoparticles synthesized in one-phase system. Journal of colloid and interface science, 249(2), 336-345. doi: https://doi.org/10.1006/jcis.2001.8166 DOI: https://doi.org/10.1006/jcis.2001.8166

Teles, Y. C. A., Vieira, A. L. L., Alcantara, K. A., Saraiva, C. R. N. (2022). caracterização química do óleo essencial de Cinnamomum verum (canela). Revista Interfaces: Saúde, Humanas e Tecnologia, 10(2), 1332-1335. doi: https://doi.org/10.16891/2317-434X.v10.e2.a2022.pp1332-1335 DOI: https://doi.org/10.16891/2317-434X.v10.e2.a2022.pp1332-1335

Tipton, D. A., Lyle, B., Babich, H., Dabbous, M. K. (2003). In vitro cytotoxic and anti-inflammatory effects of myrrh oil on human gingival fibroblasts and epithelial cells. Toxicology in vitro, 17(3), 301-310. doi: https://doi.org/10.1016/S0887-2333(03)00018-3 DOI: https://doi.org/10.1016/S0887-2333(03)00018-3

Trajano, E. et al. (2010). Inhibitory effect of the essential oil from Cinnamomum zeylanicum Blume leaves on some food-related bacteria, Ciência e Tecnologia de Alimentos, 30, 771-775. doi: 10.1590/S0101-20612010000300032 DOI: https://doi.org/10.1590/S0101-20612010000300032

Tung, Y. T., Chua, M. T., Wang, S. Y. Chang, S. T. (2008). Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs. Bioresource technology, 99(9), 3908-3913. doi: https://doi.org/10.1016/j.biortech.2007.07.050 DOI: https://doi.org/10.1016/j.biortech.2007.07.050

Tuutijärvi, T., Lu, J., Sillanpää, M., Chen, G. (2009). As (V) adsorption on maghemite nanoparticles. Journal of hazardous materials, 166(2-3), 1415-1420. doi: https://doi.org/10.1016/j.jhazmat.2008.12.069 DOI: https://doi.org/10.1016/j.jhazmat.2008.12.069

Tuutijärvi, T., Lu, J., Sillanpää, M., Chen, G. (2010). Adsorption mechanism of arsenate on crystal γ-Fe 2 O 3 nanoparticles. Journal of environmental engineering, 136(9), 897-905. doi: https://doi.org/10.1061/(ASCE)EE.1943-7870.0000233 DOI: https://doi.org/10.1061/(ASCE)EE.1943-7870.0000233

Vangalapati, S. Satya, S. Prakash, S. Avanigadda, (2012). A review on pharmacological activities and clinical effects of cinnamon species, Research Journal of Pharmaceutical, Biological and Chemical Sciences, 3, 653-663. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3e85ede09a3f2f26c36a59df4f804af7131bbb4d

Venturoso, L. R., Bacchi, L. M. A., Gavassoni, W. L., Pontim, B. C. A., & Conus, L. A. (2010). Influência de diferentes metodologias de esterilização sobre a atividade antifúngica de extratos aquosos de plantas medicinais. Revista Brasileira de Plantas Medicinais, 12, 499-505. doi: https://doi.org/10.1590/S1516-05722010000400014 DOI: https://doi.org/10.1590/S1516-05722010000400014

Wilkinson, L. J., White, R. J., Chipman, J. K. (2011). Silver and nanoparticles of silver in wound dressings: a review of efficacy and safety. Journal of wound care, 20(11), 543-549. doi: https://doi.org/10.12968/jowc.2011.20.11.543 DOI: https://doi.org/10.12968/jowc.2011.20.11.543

Yu, D. G. (2007). Formation of colloidal silver nanoparticles stabilized by Na+–poly (γ-glutamic acid)–silver nitrate complex via chemical reduction process. Colloids and Surfaces B: Biointerfaces, 59(2), 171-178. doi: https://doi.org/10.1016/j.colsurfb.2007.05.007 DOI: https://doi.org/10.1016/j.colsurfb.2007.05.007

Publicado

2025-10-24

Como Citar

Lucas, A. F. C., Ribeiro, T. de J. T., Pinheiro Neto, A., Mouchrek Filho, V. E., & Everton, G. O. (2025). Potencial anti-inflamatório e antioxidante de nanopartículas de prata sintetizadas utilizando a nanoemulsão do óleo essencial de Cinnamomum verum. Ciência E Natura, 47, e88050. https://doi.org/10.5902/2179460X88050

Edição

Seção

Química

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 > >> 

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.