Use of a multisensor platform for characterizing soil spatial variability in precision agriculture

Authors

DOI:

https://doi.org/10.5902/2179460X87030

Keywords:

Apparent soil electrical conductivity, Soil temperature, Soil moisture

Abstract

The use of precision agriculture techniques can contribute to increased productivity efficiency, as management decisions are based on the spatial variability of soil attributes that influence the productive performance of crops. This study aimed to evaluate the use of a multisensor platform in mapping the apparent soil electrical conductivity (EC), soil temperature, and soil moisture. Measurements were taken at 75 georeferenced sample points spaced 35 meters apart in an 8.6-hectare area. Statistical and geostatistical techniques were employed in the analysis and mapping of the measured variables. The EC readings from the multisensor platform were compared with those obtained using a commercial sensor, based on the analysis and calculation of the Pearson correlation coefficient (r). All measured variables showed spatial variability in the study area. The use of the multisensor platform allowed for mapping the spatial variability of EC, temperature, and soil moisture, and thematic maps indicating these variations throughout the studied area were generated. The EC measured by the multisensor platform was similar to the EC measured by the commercial sensor, with r = 0.8, indicating reliability in the field readings.

Downloads

Download data is not yet available.

Author Biographies

Eduardo Leonel Bottega, Universidade Federal de Santa Maria

PhD in Agricultural Engineering

Bruno Passador Lombardi, Universidade Federal de Santa Maria

Agricultural Engineering Student

Matheus da Silva Costa, Universidade Federal de Santa Maria

Agricultural Engineering Student

Daniel Marçal de Queiroz, Universidade Federal de Viçosa

PhD in Agricultural and Biological Engineering

André Luiz de Freitas Coelho, Universidade Federal de Viçosa

PhD in Agricultural Engineering

Zanandra Boff Oliveira, Universidade Federal de Santa Maria

PhD in Agricultural Engineering

References

Bernardi, A.C. de C.; Grego, C.R.; Andrade, R.G.; Rabello, L.M.; Inamasu, R. Y. (2017). Spatial variability of vegetation index and soil properties in an integrated crop-livestock system. Revista Brasileira de Engenharia Agrícola e Ambiental, v.21, n.8, p.513–518. https://doi.org/10.1590/1807-1929/agriambi.v21n8p513-518

Bottega, E.L.; Safanelli, J.L.; Zeraatpisheh, M.; Amado, T.J.C.; Queiroz, D.M. de; Oliveira, Z.B. de. (2022a). Site-Specific Management Zones Delineation Based on Apparent Soil Electrical Conductivity in Two Contrasting Fields of Southern Brazil. Agronomy, v.12, n.6, 1390. https://doi.org/10.3390/agronomy12061390

Bottega, E.L.; Oliveira, Z.B. de; Amado, T.J.C.; Abreu, B.C.R. de. (2022b). Mapeamento da condutividade elétrica aparente do solo por diferentes equipamentos. Revista Cultura Agronômica, v.31, n.1, p.12-27. http://dx.doi.org/10.32929/2446-8355.2022v31n1p12-27

Corwin, D.L.; Hendrickx, J.M.H. (2002). Electrical Resistivity: Wenner Array. In: SILVA, J.S. Methods of Soil Analysis Part 4 Physical Methods, Madison, Wisconsin, USA: SSSA Book Series, n. 5, p.1282-1287.

Corwin, D.L.; Lesch, S.M. (2003). Application of Soil Electrical Conductivity to Precision Agriculture: Theory, Principles, and Guidelines. Agronomy Journal, v.95, n. 3, p. 471-471. https://doi.org/10.2134/agronj2003.4550

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Sistema Brasileiro de Classificação de Solos. 3. ed. Brasília, Embrapa Informação Tecnológica. 353p. 2013.

Galarça, S.P.; Lima, C.S.M.; Silveira, G. da; Rufato, A. de R. (2010). Correlação de Pearson e análise de trilha identificando variáveis para caracterizar porta-enxerto em Pyrus communis L. Ciência e Agrotecnologia, v.34, n.4, p. 860-869. https://doi.org/10.1590/S1413-70542010000400010

Gasparim, E.; Ricieri, R.P.; Silva, S.L.; Dallacort, R.; Gnoatto, E. (2005). Temperatura no perfil do solo utilizando duas densidades de cobertura e solo nu. Acta Scientiarum. Agronomy, v.27, n.1, p.107-115. https://doi.org/10.4025/actasciagron.v27i1.2127

Guilherme, A.P.; Biudes, M.S.; Mota, D. dos S.; Musis, C.R.D. (2020). Relationship between soil cover type and surface temperature. Sociedade & Natureza, [S. l.], v.32, p.539–550. https://doi.org/10.14393/SN-v32-2020-47462

Inamasu, R.Y.; Bernardi, A.C. de C. (2014). Agricultura de precisão. In: Bernardi, A. C. de C.; Naime, J. M.; Resende, A. V.; Bassoi, L. H.; Inamasu, R. Y. (ed.). Agricultura de precisão: Resultados de um novo olhar. Brasília: EMBRAPA, 2014. p.21-33.

Kitchen, N.R.; Drummond, S.T.; Lund, E.D.; Sudduth, K.A.; Buchleiter, G.W. (2003). Soil electrical conductivity and topography related to yield for three contrasting soil-crop systems. Agronomy Journal, v.95, p.483-495. https://doi.org/10.2134/agronj2003.0483

Mello, J.M.; Oliveira, M.S. de; Batista, J.L.F.; Justiniano Júnior, P.R.; Kanegae Júnior, H. (2006). Uso do estimador geoestatístico para predição volumétrica por talhão. Floresta, v.36, n.2, p.251-260. http://dx.doi.org/10.5380/rf.v36i2.6454

Molin, J.P.; Rabello, L.M. (2011). Estudos sobre a mensuração da condutividade elétrica do solo. Engenharia Agrícola, v.31, n.1, p.90–101. https://doi.org/10.1590/S0100-69162011000100009

Oliver, M.A.; Webster, R. (2014). A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena, v.113, p.56-69. https://doi.org/10.1016/j.catena.2013.09.006

Pereira, G.W.; Valente, D.S.M.; Queiroz, D.M. de; Coelho, A.L.F.; costa, M.M.; Grift, T. (2022). Smart-Map: An open-source QGIS plugin for digital mapping using machine learning techniques and ordinary kriging. Agronomy, v.12, n.6:1350. https://doi.org/10.3390/agronomy12061350

Queiroz, D.M. de., Coelho, A.L. de F., Valente, D.S.M.; Schuller, J.K. (2020). Sensors applied to Digital Agriculture: A review. Revista Ciência Agronômica, 51(spe), e20207751. https://doi.org/10.5935/1806-6690.20200086

Salomão, P.E.A.; Kriegel, W.; Santos, A.A. dos; Martins, A.C.E. (2020). A importância do sistema de plantio direto na palha para reestruturação do solo e restauração da matéria orgânica. Research, Society and Development, v.9, n.1, e154911870. http://dx.doi.org/10.33448/rsd-v9i1.1870

Serrano, J.M.; Peça, J.O.; Marques da Silva, J.R.; Shahidian, S. (2010). Mapping soil and pasture variability with an electromagnetic induction sensor. Computers and Electronics in Agriculture, v.73, p.7-16. https://doi.org/10.1016/j.compag.2010.03.008

Sousa, E. di T. dos S.; Queiroz, D.M. de; Rosas, J.T.F.; Nascimento, A.L. do. (2021). Spatial variability of soil apparent electrical conductivity effect of the number of subsamples. Engenharia Agrícola, v.41, n.3, p.396-401. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v41n3p396-401/2021

Vieira, F.F.; Dallacort, R.; Barbieri, J.D.; Dalchiavon, F.C.; Daniel, D.F. (2020) Temperatura e umidade do solo em função do uso de cobertura morta no cultivo de milho. Científica, v.48, n.3, p.188-199. https://doi.org/10.15361/1984-5529.2020v48n3p188-199

Downloads

Published

2024-11-08

How to Cite

Bottega, E. L., Lombardi, B. P., Costa, M. da S., Queiroz, D. M. de, Coelho, A. L. de F., & Oliveira, Z. B. (2024). Use of a multisensor platform for characterizing soil spatial variability in precision agriculture. Ciência E Natura, 46(esp. 3), e87030. https://doi.org/10.5902/2179460X87030

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.