Radiative behavior and canopy light extinction coefficient in a savanna urban area

Levi Pires de Andrade, Jonathan Willian Zangeski Novais, Marta Cristina de Jesus Albuquerque Nogueira, Luciana Sanches, José de Souza Nogueira, Carlo Ralph de Musis

Abstract


The knowledge of the radiative characteristics of an area is essential to understanding the flows of matter and energy. The value of the Light Extinction Coefficient (K) is a parameter that describes the efficiency of the interception of light in a given canopy, being required, as input, for several SWAP (Soil-Water-Atmosphere-Plant) models, which allow the characterization of the interactive properties among  soil, plant and atmosphere concerning these exchanges of matter and energy. This study aimed to obtain the light extinction coefficient (K) for a savanna fragment located in the urban area of Cuiabá. The used data correspond to one measurement each month, totaling twelve measurements in 30 points during the period from October 2014 to September 2015. The measured variables  were the LAI (Leaf Area Index), the photosynthetically active incident radiation (PARinc) and the transmitted radiation  (PARtrans), and the calculated ones were the zenith angle (Zh) and the extinction coefficient (K). Was observed an annual variability for the light extinction coefficient between 0.49 and 0.69. There are seasonal changes that interfere with the canopy geometry and the position of the study area in relation to the solar radiation incidence, concluding that the K variability is predominantly temporal.


Keywords


Leaf area index; Photosynthetically active radiation; Canopy geometry

Full Text:

HTML

References


ALVARES CA, STAPE JL, SENTELHAS PC, GONÇALVES JLM, SPAROVEK G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 2013;22, n.6: 711-728.

ANGELOCCI LR, MARIN FR, PILAU FG, RIGHI FG, FAVARIN JL. Radiation balance of coffee hedgerows. Rev. bras. eng. agríc. ambient., 2008;12, n.3: 274-281.

BALANDIER P, SONOHAT G, SINOQUET H, VARLET-GRANCHER C, DUMAS Y. Characterisation, prediction and relationships between different wavebands of solar radiation transmitted in the understorey of even-aged oak (Quercuspetraea, Q.robur) stands. Journal Trees Structure and Function, 2006;20, n. 363.

BARROS MP. Estudo microclimático e topofílico no Parque Mãe Bonifácia da cidade de Cuiabá-MT [dissertation]. Cuiabá: Mestrado em Física Ambiental/UFMT; 2009.147 p.

BUNCHAFT G, KELLNER SR. Estatística sem mistérios. Petrópolis: Editora Vozes; 1999.

CAMACHO RG, GARRIDO O, LIMA MG. Caracterizacion de nueve genótipos de maiz (Zeamays L.) em relacion a área foliar y coeficiente de extincion de luz. Journal Scientia Agricola, 1995;52, n.2: 294-298.

CARVALHO CAB, ROSSIELLO ROP, PACIULLO DSC, SBRISSIA AF, DERESZ F. Classes de perfilhos na composição do índice de área foliar em pastos de capim-elefante. Pesq. Agropec. Bras., 2007;42, n.4: 557-563.

DALMAGRO HJ, LOBO FA, VOURLITIS GL, DALMOLIN ÂC, ANTUNES MZ Jr, ORTIZ CER, NOGUEIRA JS. Photosynthetic parameters of two invasive tree species of the Brazilian Pantanal in response to seasonal flooding. Photosynthetica, 2013;51, n. 2: 281–294.

DUURSMA RA, MÄKELÄ A. Summary models for light interception and light-use efficiency of non-homogeneous canopies. Journal Tree Physiology, 2006;27, n.6: 859-870.

FAGUNDES JL, SILVA SC, PEDREIRA CGS, CARNEVALLI RA, CARVALHO CAB, SBRISSIA AF, PINTO LFM. Índice de área foliar, coeficiente de extinção luminosa e acúmulo de forragem de pastagens de Cynodon spp. Sob lotação contínua. Pesq. Agropec. Bras., 2001;36, n.1: 187-195.

FORRESTER DI, GUISASOLA R, TANG X, ALBRECHT AT, DONG TL, MAIRE G. Using a stand-level model to predict light absorption in stands with vertically and horizontally heterogeneous canopies. Forest Ecosystems, 2014;1, n.17.

GOTELLI NJ, ELLISON AM. Princípios de estatística em ecologia em estatística. Porto Alegre: Artmed, 2011.

GUIMARÃES, A.K.V.; BITENCOURT, L.L. Utilização de luz pelas comunidades de plantas forrageiras nas pastagens, com ênfase nas tropicais. PUBVET, 2010;4, n.3.

HAIR JF, BLACK WC, BABIN BJ, ANDERSON RE, TATHAM RL. Análise Multivariada de Dados. 6ª. ed. Porto Alegre: Bookman, 2009.

INMAN-BAMBER NG. Temperature and seasonal effects on canopy development and light interception of sugarcane. Journal Field Crop Research. 1994;36, n.1: 41-51.

JOAQUIM TD, NOVAIS JWZ, ANDRADE LP, ROSSETI KAC, VILANI MT, PEREIRA SP. Thermo-hygrometric modeling using Envi-met software to an urban park in Cuiabá-Brazil. Ciência e Natura, 2018;40, n.37.

JURIK TW, KLIEBEINSTEIN H. Canopy Architecture, Light Extinction and Self-shading of a Prairie Grass, Andropogon gerardii. Journal The American Midland Naturalist, 2000;144,n.1: 51-65.

MAILLARD A, DIQUÉLOU S, BILLARD V, LAINÉ P, GARNICA M, PRUDENT M, GARCIA-MINA JM, YVIN JC, OURRY A. Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency. Frontiers in Plant Science, 2015;6,n.317.

MONSI M, SAEKI T. Tüber den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Japanese Journal of Botany, 1953;14: 22-52.

NOVAIS JWZ, SANCHES L, SILVA LB, MACHADO NG, AQUINO AM, PINTO JUNIOR OB. Albedo do solo abaixo do dossel em área de Vochysia Divergens Pohl no norte do Pantanal. Rev. Bras. de Met. 2016;31, n. 2, p. 157-166.

NOVAIS JWZ, SANTANNA FB, ARRUDA PHZ, PEREIRA OA, DUTRA R. Relação entre profundidade óptica de aerossóis e radiação fotossinteticamente ativa e global no cerrado mato-grossense. Rev. Estud. e Debate, 2017;n.1: 153-167.

NOVAIS JWZ, ANDRADE LP, SIQUEIRA AY, DE MUSIS CR, SANCHES L, PEREIRA AO. Avaliação do método de Lambert-Beer para estimativas de índice de área foliar no cerrado mato-grossense. Revista Ibero-americana de Ciências Ambientais, 2018;9, n.2.

PEDREIRA BC, PEDREIRA CGS. Fotossíntese foliar do capim-xaraés (Brachiariabrizantha (A.Rich.) Stapf. cv. Xaraés) e modelagem da assimilação potencial de dosséis sob estratégias de pastejo rotativo. R. Bras. de Zootec., 2007;36, n.4:773-779.

PINTO VM, REICHARDDT K, DAM J, LIER QJ, BRUNO IP, DURIGON A, DOURADO-NETO D, BORTOLOTTO RP. Deep drainage modeling for a fertigated coffee plantation in the Brazilian savanna. Journal Agricultural Water Management, 2014;148, n.31:130-140.

INTITUTO DE PLANEJAMENTO E DESENVOLVIMENTO URBANO IPDU[Internet]. Plano Diretor de Desenvolvimento Estratégico de Cuiabá. Cuiabá, 2008.

SPEARMAN C. The proof and measurement of association between two things. American Journal Psychology, 1904;15,n.1: 72-101.

TEH CBS. Introduction to mathematical modeling of crop growth: How the equations are derived and assembled into a computer program. 1st ed. Boca Raton: Brown Walker Press, 2006.

ZHANG L, HU Z, FAN J, ZHOU D, TANG F. A meta-analysis of the canopy light extinction coefficient in terrestrial ecosystems. Journal frontiers in earth science, 2014;8, n.4: 599-609.

ZHOU M, SINGELS A, SAVAGE MJ. Physiological parameters for modelling differences in canopy development between sugarcane cultivars. In. Proceedings of the Annual Congress of the South African Sugar Technologists Association; 2003, Mount Edgecomb, South Africa. p. 610-621.




DOI: https://doi.org/10.5902/2179460X34031

Copyright (c) 2020 Ciência e Natura

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.