Assessment of spectral indexes for estimating soil water content in the Brazilian Pantanal
DOI:
https://doi.org/10.5902/2179460X42724Keywords:
Pasture, Remote sensing, Landsat 5Abstract
The Pantanal is the largest floodplain of the globe occupying 138,183 km2 in Brazil. The fundamental ecological factor of interaction between the Pantanal ecosystems is the flooding regime. Connected to properties of the soil-plant-atmosphere system, knowledge on the soil water content becomes increasingly necessary. The high temporal and spatial variability of water content in the soil caused by the vast heterogeneity of soil texture, vegetation, topography and climate makes it a difficult physical variable to be measured. However, its spatial and temporal variability can be determined by recent modern techniques of remote sensing based on data obtained by microwave or infrared sensors. Thus, the aim of this study was to evaluate the accuracy of vegetation and soil water indexes through satellite images from Landsat 5 in the northern Brazilian Pantanal. The study was conducted in a pasture, experimental site in the Northern Pantanal in Mato Grosso state. Soil moisture was measured using a TDR probe installed at 10 cm depth in the period from 2009 to 2011. For comparison, spectral indexes and the surface temperature provided by Geological Survey (USGS) were used, these indexes are derived from bands ratios of satellite reflectance products Landsat 5 TM. The data evaluation was performed using some indicators: accuracy - Willmott index, Root Mean Square Error and the Mean Absolute Error. This study demonstrated that the application of remote sensing in the management of water resources is very promising. The indexes correlated with soil moisture measurement. Among the soil water indexes the NBR-2 showed related to soil moisture measurement. For both types of soils EVI had the highest determination coefficient, lowest errors and highest Willmott’s index of agreement.
Downloads
References
Ahmad, M.; Bastiaanssen, W. G. M. Retrieving soil moisture storage in the unsaturated zone using satellite imagery and bi-annual phreatic surface fluctuations. Irrigation and Drainage Systems, v.17, p.141-161, 2003.
Andrade, R. G.; Sediyama, G. C.; Paz, A. R.; Lima, E. P.; Facco, A. G. Geotecnologias aplicadas à avaliação de parâmetros biofísicos do Pantanal. Pesquisa Agropecuária Brasileira, v.47, n.9, p.1227-1234, 2012.
Bazzo, J. C.; Freitas, D. A. F.; Silva, M. L. N.; Cardoso, E. V.; Santos, S. A. Aspectos geofísicos e ambientais do Pantanal da Nhecolândia. Revista de Geografia. v. 29, p.141-151, 2012.
Bezerra, B. G.; Santos, C. A. C.; Silva, B. B.; Perez-marin, A. M.; Bezerra, M. V. C.; Bezerra, J. R. C.; Rao, T. V. R. Estimation of soil moisture in the root-zone from remote sensing data. Revista Brasileira de Ciência do Solo, v.37, p.596-603, 2013.
Biudes, M. S.; Machado, N. G.; Danelichen, V. H. M.; Souza, Maísa C.; Vourlitis, G. L.; Nogueira, J. S. Ground and remote sensing-based measurements of leaf area index in a transitional forest and seasonal flooded forest in Brazil. International Journal of Biometeorology, v. 58, p.1181-1193, 2013.
Catian, G.; Scremin-Dias, E.; Pott, A. Reproductive phenology of Polygonum hispidum Kunth and P. punctatum Elliott (Polygonaceae), in response to the flooding cycle in the Pantanal, Brazil. Boletim do Museu Paraense Emílio Goeldi. Ciências Naturais, v. 12, p. 197-207, 2017.
Chen, D. H. J.; Jackson, T. Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near-and short-wave infrared bands. Remote Sensing of Environment, v.98, p.225–236, 2005.
Collares, G. L.; Reinert, D. J.; Reichert, J. M; Kaiser, D. R. Qualidade física do solo na produtividade da cultura do feijoeiro num Argissolo. Pesquisa agropecuária brasileira, v.41, p. 1663-1674, 2006.
Coringa, E. A. O.; Couto, E. G.; Perez, X. L. O.; Torrado, P. V. Atributos de solos hidromórficos no Pantanal Norte Matogrossense. Acta Amazonica, v. 42, p.19-28, 2012.
Couto, E.G.; Oliveira, V. The Pantanal of Mato Grosso: Ecology, biodiviersity and sustainable management of a large neotropical seasonall wetland. Sofia: Pensoft. The Soil Diversity of the Pantanal, p. 40-64. 2010.
Cremon, C.; Longo, L.; Mapeli, N. C.; Silva, L. A. M.; Silva, W. M. Determinação da umidade de diferentes solos do Pantanal Matogrossense via micro-ondas e método padrão. Revista Agrarian, v.7, n.24, p.280-288, 2014.
Fernandes, F.A.; Fernandes, A.H.B.M.; Soares, M. T. S.; Pellegrin, L.A.; Lima, I.B.T. Update Map of Soils of the Pantanal lowlands for the Brazilian System of Soil Classification. Comunicado Técnico 61 - Brasília-DF: Embrapa Pantanal, Corumbá-MS, 6 p, 2007.
Ford, T. W.; Quiring, S. M. Comparison of Contemporary in Situ, Model, and Satellite Remote Sensing Soil Moisture with a Focus on Drought Monitoring. Water Resources Research, v.55, p.1-18, 2019.
Gao B. NDWI – A normalized difference water index for remote sensing of vegetation liquid water from space, Remote Sensing of Environment, v.58, p.257-266, 1996.
Gevaerd, R.; Freitas, S. R.; Longo, M.; Moreira, D. S.; Silva Dias, M. A. F.; Silva Dias, P. L. Estimativa operacional da umidade do solo para iniciação de modelos de previsão numérica da atmosfera. Parte II: Impacto da umidade do solo e da parametrização de cumulus na simulação de uma linha seca. Revista Brasileira de Meteorologia, v.21, p.74-88, 2006.
Huete, A. R. A soil-adjusted vegetation index. Remote Sensing of Environment, v.25, p.295-309, 1988.
Huete, A. R.; Liu, H. Q.; Batchily, K.; Leeuuwen, W. Van. A Comparison of Vegetation Indices over a Global Set of TM Images for EOS-MODIS. Remote Sensing of Environment, p.440-451, 1997.
Lopez Garcia, M. J.; Caselles, V. Mapping burns and natural reforestation using thematic mapper data. Geocarto International, v.6, p.31-37, 1991.
Machado, N. G.; Biudes, M. S.; Querino, C. A. S.; Danelichen, V. H. M.; Velasque, M. C. S. Seasonal And Interannual Pattern Of Meteorological Variables In Cuiabá, Brazil. Revista Brasileira de Geofísica, 33(3), p.1-23, 2015.
Masek, J.G., Vermote, E.F., Saleous N.E., Wolfe, R., Hall, F.G., Huemmrich, K.F., Gao, F., Kutler, J., And Lim, T-K. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geoscience and Remote Sensing Letters 3(1): 68-72, 2006.
Mcfeeters, S. K. The use of Normalized Difference Water Index (NDWI) in the delineation of open water features, International Journal of Remote Sensing, v.17, p.1425–1432, 1996.
Miller, J. D.; Thode, A. E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sensing of Environment, v.109, p.66-80, 2007.
Nobre, C. A.; Fisch, G., Rocha, H. R.; Lyra, R. F. F.; Rocha, E. P.; Costa, A. C. L.; Ubarana, V. N. Observations of the atmospheric boundary layer in Rondônia. In: Gash, J. H. C.; Nobre, C.A.; Roberts, J.M.; Victoria, R.L. Amazonian Deforestation and Climate, p. 413-424, 1996.
Peng, J.; Loew, A.; Merlin, O.; Verhoest, N. E. C. A review of spatial downscaling of satellite remotely sensed soil moisture. Reviews of Geophysics, v.55, p.341–366, 2017.
Pereira, L. E.; Amorim, G.; Grigio, A. M.; Paranhos Filho, A. C. Análise Comparativa entre Métodos de Índice de Água por Diferença Normalizada (NDWI) em Área Úmida Continental. Anuário do Instituto de Geociências, v.41, p.654-662, 2018.
Rouse J. W.; Haas Jr, R. H.; Schell J. A.; D. W. Deering, Monitoring vegetation systems in the Great Plains with ERTS. Remote Sensing Center, NASA SP-351 I, p.309–317, 1973.
Qi, J.; Chehbouni, A.; Huete, A. R.; KERR, Y. H. Modified Soil Adjusted Vegetation Index (MSAVI). Remote Sensing of Environment, v.48, p.119-126, 1994.
Sakamoto, T.; Nguyen, N. V.; Kotera, A.; Ohno, N.; Ishitsuka, N.; Yokozawa, M. Detecting temporal changes in the extent of annual flooding within the Cambodia and the Vietnamese Mekong Delta from MODIS time-series imagery, Remote Sensing of Environment, v.109, p.295–313, 2007.
Scott, C.; Bastiaanssen, W. G. M.; Ahmad, M. Mapping root zone soil moisture using remotely sensed optical imagery. Journal of Irrigation and Drainage Engineering, v.129, p.326-335, 2003.
SEPLAN - Secretaria de Estado de Planejamento e Coordenação Geral (Mato Grosso) Unidades climáticas do estado de Mato Grosso. Cuiabá, MT: 2001. A021p.
Serrano, L.; Ustin, Sl.; Roberts, Da.; Gamon, Já.; Penuelas, J. Deriving water content of chaparral vegetation from AVIRIS Data. Remote Sensing of Environment, v.74, p.570–581, 2000.
Willmott, C. J.; Robeson, S. M.; Matsuura, K. Short Communication A refined index of model performance. International Journal of Climatology, v.32, p.2088–2094, 2012.
Published
Versions
- 2022-01-04 (3)
- 2021-12-28 (2)
- 2021-03-08 (1)
How to Cite
Issue
Section
License
Copyright (c) 2021 Ciência e Natura
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.