RELATIONSHIP BETWEEN CONCENTRATIONS OF TOTAL SOLUBLE CARBOHYDRATES IN THE LEAVES AND COLD TOLERANCE IN DIFFERENT SPECIES OF Eucalyptus spp.
DOI:
https://doi.org/10.5902/198050988450Keywords:
lethal temperature of 50% (LT50), acclimatization, sub-zero temperature, cold damageAbstract
http://dx.doi.org/10.5902/198050988450This work was carried out to evaluate the effects of the rustification on cold tolerance in Eucalyptus dunnii Maiden, Eucalyptus benthamii Maiden & Cambage, Eucalyptus grandis W. Hill ex Maiden, and Eucalyptus saligna Sm., by quantifying leaf contents of total soluble carbohydrates and proline. Seedlings (three months old and about 50 cm height) of these species were submitted to two periods of rustification (zero and 21 days exposure to day/night temperatures of 5ºC/1ºC), with photoperiod of 12 hours. After each period of rustification, the seedlings were submitted, for 3 hours, to three temperatures below 0oC (-2ºC, -5ºC, and -8ºC). The seedlings were then assessed for leaf contents of total soluble carbohydrates and proline, lethal temperature of 50% (LT50), and cold damage index. Proline was not detected in the leaves of all species. However, in non-rustified seedlings, there were differences between the species regarding to the foliar contents of carbohydrates, with the highest values in Eucalyptus benthamii, intermediary in Eucalyptus dunnii and Eucalyptus grandis, and the lowest in Eucalyptus saligna. The rustification treatment increased leaf concentration of total soluble carbohydrates by 2.9, 2.5, 2.8, and 1.3 in Eucalyptus dunnii, Eucalyptus benthamii, Eucalyptus saligna and Eucalyptus grandis, respectively. In the seedlings not submitted to the rustification, the LT50 value was lower in Eucalyptus benthamii, intermediary in Eucalyptus dunnii and Eucalyptus grandis, and higher in Eucalyptus saligna. However, in rustified seedlings the LT50 was no different among the species. Rustification reduced the LT50, except in Eucalyptus benthamii. There was a negative correlation between leaf concentration of total soluble carbohydrates and the LT50, considering all Eucalyptus species evaluated. The results show that leaf concentration of total soluble carbohydrates can be used as an indicator of cold tolerance in species of Eucalyptus.
Downloads
References
BATES, L. S.; WALDRENR, P.; TEARE, I. D. Rapid determination of free proline for water - stress studies. Plant and Soil, v. 39, n. 1, p. 205-207, 1973.
BRACKMANN, A. et al. Qualidade de Zinnia elegans ‘SCARLET’ EM SOLUÇÕES CONSERVANTES COM SACAROSE. Revista Brasileira de Agrociências. v. 10, n. 1, p. 127-129, 2004.
BRAVO, L. A. et al. Cold resistance in Antarctic angiosperms. Physiologia Plantarum, v. 111, n. 1, p. 55-65, 2001.
BRAVO, L. A. et al. The role of ABA in freezing tolerance and cold acclimation in barley. Physiologia Plantarum, v. 103, n. 1, p. 17-23, 1998.
BRIGAS, F. J. et al. Influence of photoperiod and temperature on the development of frost tolerance, growth and contents of water, sugars, starch and proline of shoots and roots of juniper (Juniperus chinensis L. ‘Pfitrzerana’). Canadian Journal Plant Science, v. 69, n. 1, p. 305-316, 1989.
EMBRAPA. Centro Nacional de Pesquisa de Florestas. (Colombo, PR). Zoneamento ecológico para plantios florestais no estado de Santa Catarina. Colombo, 1988. 113 p. (EMBRAPA-CNPF. Documentos, 21).
FLINT, H. L.; BOYCE, B. R.; BEATTIE, D. J. Index of injury – a useful expression of freezing injury to plant tissues as determined by the electrolytic method. Canadian Journal Plant Science v. 47, n. 2, p. 229-230, 1967.
HANSON, A. D. et al. Capacity for proline accumulation during water stress in barley and its implication for breeding for drought resistance. Crop Science, v. 19, n. 4, p. 489-493, 1979.
HANSON, A. D.; HITZ, W. D. Metabolic responses of mesophytes to Plant water deficits. Plant Physiology, v. 33, n. 6, p. 163-203, 1982.
HIGA, A. R.; GARCIA, C. H.; SANTOS, E. T. Geadas, prejuízos à atividade florestal. Silvicultura. São Paulo, v. 15, n. 58, p. 40-43, 1994.
HIGA, A. R.; HIGA, R. C. V. Indicação de espécies para reflorestamento. In: GALVÃO, A. P. M. (Ed.). Reflorestamento de propriedades rurais para fins produtivos e ambientais: um guia para ações municipais e regionais. Brasília: Embrapa Comunicação para Transferência de Tecnologia, Embrapa Florestas, 2000. p.101-124.
HIGA, R. C. V. et al. Comportamento de vinte espécies de Eucalyptus em área de ocorrência de geadas na região Sul do Brasil. In: IUFRO CONFERENCE ON SILVICULTURE AND IMPROVEMENT OF EUCALYPT, 1997, Salvador. Proceedings... Colombo: EMBRAPA, Centro Nacional de Pesquisa de Florestas, 1997. p.106-110.
HIGA, R. C. V.; PEREIRA, J. C. D. Usos Potenciais do Eucalyptus benthamii Maiden et Cambage. Colombo: Embrapa, 2003. (Comunicado Técnico, n. 100).
JACOBSEN, S. E. et al. Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.). European Journal of Agronomy, v. 26, n. 4, p. 471-475, 2007.
LARCHER, W. Ecofisiologia vegetal. São Carlos: Rima, 2000. 398 p.
LEBORGNE, N. et al. Introduction of specific carbohydrates into Eucalyptus gunnii cells increases their freezing tolerance. European Journal of Biochemistry, v. 229, n. 3, p. 710-717, 1995.
LEVITT, J. Responses of plants to environmental stresses: chilling, freezing and higth temperatures stresses. 2nd ed. New York: Academic Press, 1980. p. 67-344.
MORAGA S. P.; ESCOBAR, R.; VALENZUELA, A. S. Resistance to freezing in three Eucalyptus globulus Labill subspecies. Electronic Journal Biotechnology, v. 9, n. 3, p. 310-314, 2006.
NILSEN, E.; ORCUTT, D. The physiology of plants under stress. Incorpo: John Wiley & Sons, 1996. p.704.
PALONEN, P.; JUNTTILA, O. Cold hardening of raspberry plants in vitro is enhanced by increasing sucrose in the culture medium. Physiologia Plantarum, v. 106, n. 4, p. 386-392, 1999.
PALTA, J. P. et al. Molecular mechanisms of freeze-thaw injury and cold acclimation in herbaceous plants: merging physiological and genetic approaches. NATO AS1, v. 16, n. 16, p.659-680, 1993.
PALUDZYSZYN FILHO, E.; SANTOS, P. E. T. Considerações sobre o plantio de Eucalyptus dunnii no estado do Paraná. Colombo: Embrapa, 2005. (Comunicado Técnico, n. 141).
STEPONKUS, P. L.; UEMURA, M.; WEBB, M. S. Redesigning crops for increased tolerance to freezing stress. NATO AS1 Ser I, v. 16, n. 1, p. 697-714, 1993.
SWAAIJ, van A. C.; JACOBSEN E.; FEENSTRA, W. J. Effect of cold hardening, wilting and exogenously applied proline on leaf praline content and frost tolerance of several genotypes of Solanum. Physiologia Plantarum, v. 64, n. 2, p. 230-236, 1985.