TOLERANCE OF CANAFÍSTULA (Peltophorum dubium (SPRENG) TAUB.) SEEDLINGS INOCCULATED WITH Pisolithus microcarpus TO COPPER CONTAMINATED SOIL

Authors

  • Rodrigo Ferreira da Silva UFSM
  • Zaida Inês Antoniolli
  • Manoeli Lupatini
  • Lineu Leal Trindade
  • Alessandro Salles da Silva

DOI:

https://doi.org/10.5902/198050981768

Keywords:

ectomycorrhizal, heavy metal, contamination soil.

Abstract

The ectomycorrhizal fungi symbiosis with native florestal essences may be an alternative to   revegetation of metal contaminated soils. The aim of this work was to determine canafístula seedlings behavior, inoculated to ectomycorrhizal fungi in soil with copper excess. The trial was conducted in greenhouse conditions. The ectomycorrhizal fungi used was Pisolithus microcarpus UFSC Pt116, cultivated on peat-vermiculite substrate (3:1). The canafístula seedlings were developed in washed  sand and transplanted, when showed two definitive leaves. Vase of 1L with 1 kg of soil were used as experimental unit. The inoculation was accomplished in the seedlings transplant, added 2g of inoculates for experimental unit. The experimental design was entirely casual in bi factorial scheme (2 x 4) qualitative in A, with and without fungi inoculum and quantitative in D being the control addition of 150 mg Kg -1, 300 mg Kg -1 and 450 mg Kg -1 of copper (CuSO4), with seven repetitions. Plant height, colon diameter, dry matter, copper content, mycorrhizal colonization percentage, superficial roots area and roots length were assessed. The increase of soil copper levels reduced roots length, specific superficial roots area, height and plant diameter of canafístula. Canafistula seedlings inoculated to ectomycorrhizal fungi showed low cooper amounts in their tissue and copper absortion reduced in high copper doses.

Downloads

Download data is not yet available.

References

ADALSTEINSSON, S. et al. Monoting copper-induced in fine root geometry of birch (Betula pendula) using nutrient film technique. Physiologia Plantarum, Rockville, v. 99, n. 3, p. 379-384, 1997.

AGGANGAN, N. S.; DELL, B.; MALAJCZUK, N. Effects of chromium and nickel on growth of the ectomycorrhizal Pisolithus and formation of ectomicorrízas on Eucaliptus urophylla S.T. Blake. Geoderma, Amsterdam, v. 84, n. 1-3, p. 15-27, 1998.

ANDREAZZA, R. et al. Espécies de Pisolithus sp. na produção de mudas de Eucalyptus grandis Hill ex Maiden em solo arenoso. Ciência Florestal, Santa Maria, v. 14, n. 2, p. 51-59, 2004.

BACKES, P.; IRGANG, B. Árvores do Sul: Guia de Identificação e Interesse Ecológico. Santa Cruz do Sul: Instituto Souza Cruz, 2004. 326 p.

BELL, R.; EVANS, C. S.; ROBERTS, E. R. Decreased incidence of mycorrhizal root types associated with soil heavy metal enrichment. Plant and Soil, Crawley, v. 106, n. 1, p. 143-145, 1988.

BRUNDRETT, M. et al. Working with mycorrhizas in forestry and agriculture. Canberra: ACIAR, 1996. 400 p.

COLPAERT, J. V; VAN ASSCHE, J. A. The effects of cadmium on ectomycorrhizal Pinus sylvestris L. New Phytologist, Cambridge, v. 123, n. 2, p. 325-333, 1993.

COSTA, M. D. et al. Ectomicorrizas: a face oculta das florestas: Aplicações biotecnológicas das ectomicorrizas na produção florestal. Biotecnologia Ciência & Desenvolvimento, v. 29, n. 1, p. 38-46, 2003.

DIAS JÚNIOR, H. E. et al. Metais pesados densidade e atividade microbiana do solo contaminado por rejeitos de indústria de zinco. Revista Brasileira de Ciência do Solo, Viçosa, v. 22, n. 4, p. 631-640, 1998.

DIXON, R. K.; BUSCHENA, C. A. Response of ectomycorrhizal Pinus banksiana and Picea glauca to heavy metals in soil. Plant and Soil, Crawley, v. 105, n. 2, p. 265-271, 1988.

EMBRAPA. Sistema Brasileiro de Classificação de Solos. Rio de Janeiro: EMBRAPA, 1999. 412 p.

FERNANDES, J. C.; HENRIQUES, F. S. Biochemical, physiology and structural effects of excess copper in plants. The Botanical Review, Bronx, v. 57, n. 3, p. 246-273, 1991.

FERREIRA, D. F. Sistemas de análise estatística para dados balanceados. Lavras: UFLA/ DEX/SISVAR, 2000. 145 p.

FILHO, H. G. Cobre na planta. Disponível em: (http://www.fca.unessp.br/intranet/arquivo) > Acesso em: 8 de março de 2007.

FORGATY, R. V.; TOBIN, J. M. Fungal melanins and their interactions with metal. Enzyme and Microbial Technology, Kyungbug, v. 19, n. 4, p. 311-317, 1996.

GADD, G. M.; DE ROME, L. Biosorption of copper by fungal melanin. Applied microbiology and biotechnology, Berlin, v. 29, n. 6, p. 610-617, 1988.

GADD, G. M. Interactions of fungi with toxic metals. New Phytologist, Cambridge, v. 124, n. 11, p. 25-60, 1993.

GIOVANETTI, M. G.; MOSSE, B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, Cambridge, v. 84, n. 3, p. 489-500, 1980.

GIOVANNINI, E. Toxidez por cobre em vinhedos. Pesquisa Agropecuária Gaúcha, Porto Alegre, v. 3, n. 2, p. 115-117, 1997.

GRAZZIOTTI, P. H.; SIQUEIRA, J. O.; MOREIRA, F. M. S. Efeito do Zn, Cd e Cu no comportamento de fungos ectomicorrízicos em meio de cultura. Revista Brasileira de Ciência do Solo, Viçosa, v. 25, n. 4, p. 831-838, 2001.

GRAZZIOTTI, P. H. Comportamento de fungos ectomicorrízicos, Acacia mangium e espécies de Pinus e Eucalyptus em solo contaminado por metais pesados. Lavras: UFL, 1999. 177 f. Tese (Doutorado em Agronomia) - Universidade Federal de Lavras, 1999.

HARLEY, J. L. The biology of mycorrhiza. London: Leonard Hill, 1969. 230 p.

HARTLEY, J. et al. Toxic interactions of metal ions (Cd2+, Pb+2, Zn+2 and Sb-3) in vitro biomass production of ectomycorrhizal fungi. New Phytologist, Cambridge, v. 137, n. 3, p. 551-562, 1997.

JENSEN, P.; ADALSTEINSSON, S. Copper effects on active and passive Rb+ influx in roots of winter wheat. Physiologia Plantarum, Copenhagen, v. 75, n. 2, p. 195-200, 1989.

JONES, M. D.; HUTCHINSON, T. C. The effect mycorrhizal infection on the response of Betula papyrifera to nickel and copper. New Phytologist, Cambridge, v. 102, n. 3, p. 429-442, 1986.

KHAN, A. G. Relationships between chromium biomagnification ratio, accumulation factor, and mycorrhiza in plants growing on tannery effluent-polluted-soil. Environment International, v. 26, n. 5-6, p. 417-423, 2001.

LEYVAL, C.; TURNAU, K.; HASELWANDTER, K. Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza, Secaucus, v. 7, n. 3, p. 139-153, 1997.

LUNA, C. M.; CASANO, I. M.; TRIPPI, V. S. Nitrate reductase is inhibited in leaves of Tricum aesticum treated with high levels of copper. Physiologia Plantarum, Copenhagen, v. 101, n. 1, p. 103-108, 1997.

MARSCHNER, H. Mineral Nutrition of Higher Plants. San Diego: Academic Press, 1995. 902 p.

MARX, D. H. The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic fungi and soil bacteria. I. Antagonism of mycorrhizal fungi to roots pathogenic fungi and soil bacteria. Phytopathologist, Saint Paul, v. 59, n. 2, p. 153-163, 1969.

MEDVE, R. J.; SAYRE, W. G. Heavy metals in red pines, basidiomycetes sporocarps and soils on bituminous stripmine spoils. Journal of the Pennsylvania Academy of Science, Pennsylvania, v. 68, p. 131-135, 1994.

MOREIRA, F. M. S.; SIQUEIRA, J. O. Microbiologia e Bioquímica do Solo. Lavras: Ed. UFLA, 2002. 623 p.

NORDGREN, A.; BAATH, E.; SÖDERSTROM, B. Soil microfungi in an area polluted by heavy metals. Canadian Journal of Botany, Canada, v. 63, n. 3, p. 448-455, 1985.

PANOU-FILOTHEU, H.; BOSABALIDIS, A. M.; KARATAGLIS, S. Effects of copper toxicity on leaves of oregano (Origanum vulgare subsp. hirtum). Annals of Botany, Oxford, v. 88, n. 2, p. 207-214, 2001.

PEROTTO, S.; BONFANTE, P. Bacterial associations with mycorrhizal fungi: close and distant friends in the rhizosphere. Trends in Microbiology, Cambridge, v. 5, n. 12, p. 496-501, 1997.

RIBEIRO-FILHO, M. R. et al. Metais pesados em solos de área de rejeitos de indústria de processamento de zinco. Revista Brasileira de Ciência do Solo, Viçosa, v. 23, n. 2, p. 453-464, 1999.

RÜHLING, A.; SÖDERSTROM, B. Changes in fruibody production of mycorrhizal and litter decomposing macromycetes in heavy metal polluted coniferous forests in North Sweden. Water Air Pollution, Saint Paul, v. 49, p. 375-387, 1990.

SCHELOSKE, S.; MAETZ, M.; SCHÜBLER, A. Heavy metal uptake of Geosiphon pyriforme. Nuclear instruments and Methods in Physics Research B, Washington, v.181, n. 1, p. 659-663, 2001.

SCHROEDER, M. Cobertura florestal do Rio Grande do Sul: Tendências e Perspectivas. In: SEMINÁRIO SOBRE A SITUAÇÃO FLORESTAL DO RIO GRANDE DO SUL, 1., 1991, Santa Maria. Anais… Santa Maria: UFSM, 1991, p.1-9.

SILVA, F. C. Manual de análises químicas de solos, plantas e fertilizantes. Brasília: EMBRAPA, 1999, 370 p.

SILVA, R. F. População de fungos micorrízicos e influência de ectomicorrizas na produção de mudas de Eucalyptus grandis e Pinus elliottii em solo arenoso. 2002. 105 f. Dissertação (Mestrado em Ciência do Solo) - Universidade Federal de Santa Maria, Santa Maria, 2002.

SILVA, R. F.; ANTONIOLLI, Z. I.; ANDREAZZA, R. Efeito da inoculação com fungos ectomicorrízicos na produção de mudas de Eucalyptus grandis W. Hill ex. MAIDEN em solo arenoso. Ciência Florestal, Santa Maria, v. 3, n. 1, p. 33-42, 2003.

SMITH, S.; READ, D. J. Mycorrhizal Symbiosis. London: Academic Press, 1997. 605 p.

SOARES, I. Níveis de fósforo no desenvolvimento de ectomicorrizas por Pisolithus tinctorius (Pers.) Coker & Couch e no crescimento de mudas de eucalipto. 1986. 51f. Dissertação (Mestrado em Microbiologia) - Universidade Federal de Viçosa, Viçosa, 1986.

SOARES, C. R. F. S. et al. Crescimento e nutrição mineral de Eucalyptus maculata e Eucalyptus urophylla em solução nutritiva com concentração crescente de cobre. Revista Brasileira de Fisiologia Vegetal, Lavras, v. 12, n. 3, p. 213-225, 2000.

SOLIOZ, M.; STOYANOV, J. V. Copper homeostasis in Enterococcus hirae. FEMS Microbiology Reviews, Amsterdam, v. 27, n. 2-3, p. 183-195, 2003.

TENNANT, D. A test of a modified line intersect method of estimating root lengh. Journal of Ecology, Danvers, v. 63, n. 6, p. 995-1001, 1975.

TORDOFF, G. M.; BAKER, A. J. M.; WILLIS, A. J. Current approaches to the revegetation and reclamation of metalliferous wastes. Chemosphere, Ottawa, v. 41, n. 1-2, p. 219-228, 2000.

Published

2010-03-30

How to Cite

Silva, R. F. da, Antoniolli, Z. I., Lupatini, M., Trindade, L. L., & Silva, A. S. da. (2010). TOLERANCE OF CANAFÍSTULA (Peltophorum dubium (SPRENG) TAUB.) SEEDLINGS INOCCULATED WITH Pisolithus microcarpus TO COPPER CONTAMINATED SOIL. Ciência Florestal, 20(1), 147–156. https://doi.org/10.5902/198050981768

Issue

Section

Technical Note

Most read articles by the same author(s)

<< < 1 2 3 4 > >> 

Similar Articles

You may also start an advanced similarity search for this article.