Eficiência de remoção de demanda química de oxigênio de efluentes industriais por sistema de lodos ativados e suas variantes: uma revisão sistemática e metanálise

Autores

DOI:

https://doi.org/10.5902/2179460X84287

Palavras-chave:

Processos biológicos, Resíduos líquidos, Tratamento biológico de águas residuais

Resumo

O sistema de lodos ativados é amplamente utilizado em todo o mundo para tratar tipos de resíduos complexos, devido ao seu alto nível de eficiência. O objetivo do presente estudo é identificar a eficiência de remoção de demanda química de oxigênio em efluentes industriais por sistemas de lodos ativados e suas variantes, através de uma revisão sistemática e metanálise. A busca foi realizada nas bases de dados Scopus e ScienceDirect; dois pesquisadores independentes selecionaram estudos publicados entre 2016 e 2020 para coletar os dados. Os tipos de resíduos industriais apresentaram grande variação inicial de DQO, mesmo dentro dos mesmos segmentos e tipologias; além disso, alguns sistemas de lodos ativados apresentaram pré ou pós-tratamento. A revisão sistemática e metanálise permitiram apresentar que a eficiência global de remoção da demanda química de oxigênio em efluentes industriais por sistemas de lodos ativados e suas variantes utilizados globalmente chega a 83,00% (IC = 82,00 a 93,00). Além disso, o presente estudo é o primeiro sobre esse tema; portanto, servirá de referência para futuros estudos sobre o assunto.

Downloads

Não há dados estatísticos.

Biografia do Autor

Isabella Esper Tamburus, Universidade Federal do Triângulo Mineiro

Graduação em Engenharia Ambiental pela Universidade Federal do Triângulo Mineiro.

Carlo José Freire de Oliveira, Universidade Federal do Triângulo Mineiro

Doutorado em Imunologia Básica e Aplicada pela Universidade de São Paulo.

Wellington Francisco Rodrigues, Universidade Federal do Triângulo Mineiro

Doutorado em Ciências da Saúde pela Universidade Federal do Triângulo Mineiro.

Ana Carolina Borella Marfil Anhê, Universidade Federal do Triângulo Mineiro

Doutorado em Ciências da Saúde pela Fundação Oswaldo Cruz.

Referências

Abdulgader, M., Yu, Q. J., Zinatizadeh, A., & Williams, P. (2009). Biological treatment of milk processing wastewater in a sequencing batch flexible fibre biofilm reactor. Asia Pac. J. Chem. Eng., 4(5), 698–703. https://doi.org/10.1002/apj.320 DOI: https://doi.org/10.1002/apj.320

Abdulgader, M., Yu, Q. J., Zinatizadeh, A., & Williams, P. (2020). Performance and kinetics analysis of an aerobic sequencing batch flexible fibre biofilm reactor for milk processing wastewater treatment. Journal of Environmental Management, 255, 109793. https://doi.org/10.1016/j.jenvman.2019.109793 DOI: https://doi.org/10.1016/j.jenvman.2019.109793

Abu Hasan, H., Abdullah, S. R. S., Al-Attabi, A. W. N., Nash, D. A. H., Anuar, N., Rahman, N. A., & Titah, H. S. (2016). Removal of ibuprofen, ketoprofen, COD and nitrogen compounds from pharmaceutical wastewater using aerobic suspension-sequencing batch reactor (ASSBR). Sep. Purif. Technol., 157, 215-221. https://doi.org/10.1016/j.seppur.2015.11.017 DOI: https://doi.org/10.1016/j.seppur.2015.11.017

Abyar, H., Younesi, H., & Nowrouzi, M. (2020). Life cycle assessment of A2O bioreactor for meat processing wastewater treatment: an endeavor toward the achievement of environmentally sustainable development. J. Clean. Prod., 257, 120575. https://doi.org/10.1016/j.jclepro.2020.120575 DOI: https://doi.org/10.1016/j.jclepro.2020.120575

Agresti, A., & Coull B. A. (1998). Approximate is better than "exact" for interval estimation of binomial proportions. The American Statistician, 52(2), 119–26. https://doi.org/10.2307/2685469 DOI: https://doi.org/10.1080/00031305.1998.10480550

Aguiar, M. R. M. P., & Novaes, A. C. (2002). Removal of heavy metals from industrial effluents by aluminosilicates. New Chemistry, 25(6B), 1145-1154. https://doi.org/10.1590/S0100-40422002000700015 DOI: https://doi.org/10.1590/S0100-40422002000700015

Ahmadi, M., Amiri, N., Pirsaheb, M., & Amiri, P. (2016). Application of the central composite design for the treatment of soft drink factory wastewater in two-stage aerobic sequencing batch reactors combined with ozonation. Desalination and Water Treatment, 57(41), 19077-19086. https://doi.org/10.1080/19443994.2015.1103305 DOI: https://doi.org/10.1080/19443994.2015.1103305

Alkmim, A. R., Da Costa, P. R., Moser, P. B., França, L. S. Neta, Santiago, V. M. J., Cerqueira, A. C., Reis, B. G., & Amaral, M. C. S. (2017). Potential use of membrane bioreactor to treat petroleum refinery effluent: comprehension of dynamic of organic matter removal, fouling characteristics and membrane lifetime. Bioprocess and Biosystems Engineering, 40(12), 1839–1850. https://doi.org/10.1007/s00449-017-1837-4 DOI: https://doi.org/10.1007/s00449-017-1837-4

Andern, W. T. & Lockett, W. T. (1994). Experiments on the Oxidation of Sewage without the Aid of Filters. J. Soc. Chem. 33, 523. DOI: https://doi.org/10.1002/jctb.5000331005

Andrade, L. H., Motta, G. E., & Amaral, M. C. S. (2013). Treatment of dairy wastewater with a membrane bioreactor. Brazilian Journal of Chemical Engineering, 30(4), 759–770. https://doi.org/10.1590/S0104-66322013000400008 DOI: https://doi.org/10.1590/S0104-66322013000400008

Arango, H. G. (2001). Bioestatística teórica e computacional. Guanabara Koogan.

Araújo, C. V. M., Nascimento, R. B., Oliveira, C. A., Strotmann, U. J., & Da Silva, E. M. (2005). The use of Microtox to assess toxicity removal of industrial effluents from the industrial district of Camaçari (BA, Brazil). Chemosphere, 58(9), 1277-1281. https://doi.org/10.1016/j.chemosphere.2004.10.036 DOI: https://doi.org/10.1016/j.chemosphere.2004.10.036

Associação Brasileira de Normas Técnicas. (1987). NBR 9800: Critérios para lançamento de efluentes líquidos industriais no sistema coletor público de esgoto sanitário - Procedimento. ABNT.

Bakare, B. F., Shabangu, K., & Chetty, M. (2017). Brewery wastewater treatment using laboratory scale aerobic sequencing batch reactor. South African Journal of Chemical Engineering, 24, 128–134. https://doi.org/10.1016/j.sajce.2017.08.001 DOI: https://doi.org/10.1016/j.sajce.2017.08.001

Basu, S. Kaushik, A., Saranya, P., Batra, V. S., & Balakrishnan, M. (2016). High strength distillery wastewater treatment by a PAC-MBR with low PAC dosage. Water Science and Technology, 73(5), 1104–1111. https://doi.org/10.2166/wst.2015.585 DOI: https://doi.org/10.2166/wst.2015.585

BCC Research. (2008). Membrane Bioreactors: Global Markets. BCC Publishing.

Baresel, C., Harding, M., & Fang, J. (2019). Ultrafiltration/granulated active carbon-biofilter: efficient removal of a broad range of micropollutants. Applied Sciences, 9(4), 710. https://doi.org/10.3390/app9040710 DOI: https://doi.org/10.3390/app9040710

Batstone, D. J., Hülsen, T., Mehta, C. M., & Keller, J. (2015). Platforms for energy and nutrient recovery from domestic wastewater: a review. Chemosphere, 140, 2-11. https://doi.org/10.1016/j.chemosphere.2014.10.021 DOI: https://doi.org/10.1016/j.chemosphere.2014.10.021

Beal, L. L., Monteggia, L. O., & Giustina, S. V. D. (2006). Otimização de uma estação de tratamento de efluentes de uma indústria de embalagens de papel. Revista Engenharia Sanitária e Ambiental, 11(3), 283-289. https://doi.org/10.1590/S1413-41522006000300012 DOI: https://doi.org/10.1590/S1413-41522006000300012

Bento, A. P., Sezerino, P. H., Philippi, L. S., Reginatto, V., & Lapolli, F. R. (2005). Caracterização da microfauna em estação de tratamento de esgotos do tipo lodos ativados: um instrumento de avaliação e controle do processo. Revista Engenharia Sanitária e Ambiental, 10(4), 329-338. https://doi.org/10.1590/S1413-41522005000400009 DOI: https://doi.org/10.1590/S1413-41522005000400009

Borenstein, M., Hedges, L. V., Higgis, J. P. T., & Rothstein, H. R. (2010). A basic introduction to fixed-effect and random-effects models for meta-analysis. Research Synthesis Methods, 1(2), 97–111. https://doi.org/10.1002/jrsm.12 DOI: https://doi.org/10.1002/jrsm.12

Borkar R., Gulhane, M., & Kotangale, A. (2013). Moving Bed Biofilm Reactor – A New Perspective in Wastewater Treatment. IOSR-JESTFT, 6(6), 15-21. http://dx.doi.org/10.9790/2402-0661521 DOI: https://doi.org/10.9790/2402-0661521

Bui, X. T., Vo, T. P. T., Ngo, H. H., Guo, W. S., & Nguyen, T. T. (2016). Multicriteria assessment of advanced treatment technologies for micropollutants removal at large-scale applications. Sci. Total Environ., 563–564, 1050-1067. https://doi.org/10.1016/j.scitotenv.2016.04.191 DOI: https://doi.org/10.1016/j.scitotenv.2016.04.191

Bustillo-Lecompte, C. F., & Mehrvar, M. (2015). Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: a review on trends and advances. J. Environ. Manag., 161, 287-302. https://doi.org/10.1016/j.jenvman.2015.07.008 DOI: https://doi.org/10.1016/j.jenvman.2015.07.008

Cai, D., Huang, J. Liu, G., Li, M., Yu, Y., & Meng, F. (2018). Effect of support material pore size on the filtration behavior of dynamic membrane bioreactor. Bioresour. Technol., 255, 359–363. https://doi.org/10.1016/j.biortech.2018.02.007 DOI: https://doi.org/10.1016/j.biortech.2018.02.007

Cañizares, P., Lobato, J., Paz, R., Rodrigo, M. A., & Sáez, C. (2007). Advanced oxidation processes for the treatment of olive-oil mills wastewater. Chemosphere, 67(4), 832-838. https://doi.org/10.1016/j.chemosphere.2006.10.064 DOI: https://doi.org/10.1016/j.chemosphere.2006.10.064

Cao, S. M. S., Dezotti, M., & Bassin, J. P. (2016). MBBR followed by microfiltration and reverse osmosis as a compact alternative for advanced treatment of a pesticide-producing industry wastewater towards reuse. The Canadian Journal of Chemical Engineering, 94(9), 1657–1667. https://doi.org/10.1002/cjce.22542 DOI: https://doi.org/10.1002/cjce.22542

Cecen, F., Erdincler, A., & Kilic, E. (2003). Effect of powdered activated carbon addition on sludge dewater ability and substrate removal in landfill leachate treatment. Advances in Environmental Research, 7(3), 707–713. https://doi.org/10.1016/S1093-0191(02)00033-3 DOI: https://doi.org/10.1016/S1093-0191(02)00033-3

Chamorro, S., Vergara, J. P., Jarpa, M. Hernandez, V., Becerra, J., & Vidal, G. (2016). Removal of stigmasterol from Kraft mill effluent by aerobic biological treatment with steroidal metabolite detection. Journal of Environmental Science and Health, 51(12), 1012–1017. https://doi.org/10.1080/10934529.2016.1198190 DOI: https://doi.org/10.1080/10934529.2016.1198190

Chen, Y., Zhang, X. B., & Li, J. (2016). Advanced treatment of oilfield production wastewater by an integration of coagulation/flotation, catalytic ozonation and biological processes. Environmental Technology, 37(19), 2536–2544. https://doi.org/10.1080/09593330.2016.1153159 DOI: https://doi.org/10.1080/09593330.2016.1153159

Chisti, Y. (1998). Pneumatically agitated bioreactors in industrial and environmental bioprocessing: Hydrodynamics, hydraulics and transport phenomena. Appl. Mech. Rev., 51(1), 33-112. https://doi.org/10.1115/1.3098989 DOI: https://doi.org/10.1115/1.3098989

Choi, J.-H., Dockko, S., Fukushi, K., & Yamamoto, K. (2002). A novel application of a submerged nanofiltration membrane bioreactor (NF MBR) for wastewater treatment. Desalination, 146(1-3), 413-420. https://doi.org/10.1016/S0011-9164(02)00524-6 DOI: https://doi.org/10.1016/S0011-9164(02)00524-6

Ciocca, D. R., & Delgado, G. (2017). The reality of scientific research in Latin America; an insider’s perspective. Cell Stress and Chaperones, 22(6), 847–852. https://doi.org/10.1007/s12192-017-0815-8 DOI: https://doi.org/10.1007/s12192-017-0815-8

Cokgor, E. U., Insel, G., Aydin, E., & Orhon, D. (2009). Respirometric evaluation of a mixture of organic chemicals with different biodegradation kinetics. Journal of Hazardous Materials, 161(1), 35–41. https://doi.org/10.1016/j.jhazmat.2008.03.051 DOI: https://doi.org/10.1016/j.jhazmat.2008.03.051

Cunha, D. L., De Paula, L. M., Da Silva, S. M. C., Bila, D. M., De Fonseca, E. M., & Oliveira, J. L. da M. (2017). Ocorrência e remoção de estrogênios por processos de tratamento biológico de esgotos. Rev. Ambient. Água, 12(2), 249-262. https://doi.org/10.4136/ambi-agua.1992 DOI: https://doi.org/10.4136/ambi-agua.1992

Da Mata, R. A., Silva, C. M., Zanuncio, J. C., & Materazzi, L. B. (2019). Effects of electrostatic precipitators ash leachate (EPAL) from recovery boilers on the biological treatment of effluent of kraft pulp mills. Science of The Total Environment, 659, 905–911. https://doi.org/10.1016/j.scitotenv.2018.12.413 DOI: https://doi.org/10.1016/j.scitotenv.2018.12.413

Da Motta, M., Pons, M. N., Roche, N., Vivier, H., Amaral, A. L., Ferreira, E. C., & Mota, M. (2003). Estudo do funcionamento de estações de tratamento de esgotos por análise de imagem: validações e estudo de caso. Revista Engenharia Sanitária e Ambiental, 8(3), 170-181. file:///E:/Estudo_do_funcionamento_de_estacoes_de_tratamento_.pdf

Davies, P. S. (2005). The Biological Basis of Wastewater Treatment. Strathkelvin Instrument Ltd.

Değermenci, N. Cengiz, î. Yildiz, E., & Nuhoglu, A. (2016). Performance investigation of a jet loop membrane bioreactor for the treatment of an actual olive mill wastewater. Journal of Environmental Management, 184, 441-447. https://doi.org/10.1016/j.jenvman.2016.10.014 DOI: https://doi.org/10.1016/j.jenvman.2016.10.014

Delanka-Pedige, H. M. K. Himali, M. K., Munashinghe-Arachchige, S. P., Aberysiriwardana-Arachchige, I. S. A., Zhang, Y., & Nirmalakhandan, N. (2020). Algal pathway towards meeting United Nation’s sustainable development goal 6. Int. J. Sustain. Dev. World Ecol., 27(8), 678-686. https://doi.org/10.1080/13504509.2020.1756977 DOI: https://doi.org/10.1080/13504509.2020.1756977

Ding, D., Feng, C., Jin, Y., Hao, C., Zhao, Y., & Suemura, T. (2011). Domestic sewage treatment in a sequencing batch biofilm reactor (SBBR) with an intelligent controlling system. Desalination, 276(1-3), 260–265. https://doi.org/10.1016/j.desal.2011.03.059 DOI: https://doi.org/10.1016/j.desal.2011.03.059

Djelal, H., & Amrane, A. (2013). Biodegradation by bioaugmentation of dairy wastewater by fungal consortium on a bioreactor lab-scale and on a pilot-scale. J Environ Sci., 25(9), 1906–1912. https://doi.org/10.1016/S1001-0742(12)60239-3 DOI: https://doi.org/10.1016/S1001-0742(12)60239-3

Duan, W. Ronen, A., De Leon, J. V., Dudchenko, A., Yao, S., Corbala-Delgado, J., Yan, A., Matsumoto, M., & Jassby, D. (2016). Treating anaerobic sequencing batch reactor effluent with electrically conducting ultrafiltration and nanofiltration membranes for fouling control. Journal of Membrane Science, 504, 104-112. https://doi.org/10.1016/j.memsci.2016.01.011 DOI: https://doi.org/10.1016/j.memsci.2016.01.011

Dutta, A., & Sarkar, S. (2015). Sequencing batch reactor for wastewater treatment: recent advances. Curr. Pollut. Rep., 1, 177–190. https://doi.org/10.1007/s40726-015-0016-y DOI: https://doi.org/10.1007/s40726-015-0016-y

Erkan, H. S., & Engin, G. O. (2017). The investigation of paper mill industry wastewater treatment and activated sludge properties in a submerged membrane bioreactor. Water Science and Technology, 76(7), 1715–1725. https://doi.org/10.2166/wst.2017.351 DOI: https://doi.org/10.2166/wst.2017.351

Ersahin M. E., Ozgun, H., Dereli, R. K., Ozturk, I., Roest, K., & Van Lier, J. B. (2012). A review on dynamic membrane filtration: materials, applications and future perspectives. Bioresour. Technol., 122, 196–206. https://doi.org/10.1016/j.biortech.2012.03.086 DOI: https://doi.org/10.1016/j.biortech.2012.03.086

Ersahin M. E., Tao, Y., Ozgun, H., Gimenez, J. B., Spanjers, H., & Van Lier, J. B. (2017). Impact of anaerobic dynamic membrane bioreactor configuration on treatment and filterability performance. J Membr Sci, 526, 387–394. https://doi.org/10.1016/j.memsci.2016.12.057 DOI: https://doi.org/10.1016/j.memsci.2016.12.057

Freire, R. S., Pelegrini, R., Kubota, L. T., Durán, N., & Peralta-Zamora, P. (2000). Novas tendências para o tratamento de resíduos industriais contendo espécies organocloradas. Química Nova, 23(4), 504-511. https://doi.org/10.1590/S0100-40422000000400013 DOI: https://doi.org/10.1590/S0100-40422000000400013

Fritzmann, C., Löwenberg, J., Wintgens, T., & Melin, T. (2007). State-of-the-art of reverse osmosis desalination. Desalination, 216(1-3), 1-76. https://doi.org/10.1016/j.desal.2006.12.009 DOI: https://doi.org/10.1016/j.desal.2006.12.009

Garcia Torres, E., Morales, P. R., Zamora, A. G., Sánchez, E. R., Calderón, E. H. O., Romero, J. de. J. A., & Rincón, E. Y. C. (2022). Consumption of water contaminated by nitrate and its deleterious effects on the human thyroid gland: a review and update. International Journal of Environmental Health Research, 32(5), 984-1001. https://doi.org/10.1080/09603123.2020.1815664 DOI: https://doi.org/10.1080/09603123.2020.1815664

Ghasemian, P., Abdollahzadeh Sharghi, E., & Davarpanah, L. (2017). The Influence of Short Values of Hydraulic and Sludge Retention Time on Performance of a Membrane Bioreactor Treating Sunflower Oil Refinery Wastewater. International Journal of Engineering, 30(10), 1417-1424. http://dx.doi.org/10.5829/ije.2017.30.10a.01 DOI: https://doi.org/10.5829/ije.2017.30.10a.01

Gray, N. F. (1990). Activated Sludge: Theory and Practice. Oxford Science Publications.

Hai, F. I., Tessmer, K., Nguyen, L. N., Kong, J., Price, W. E., & Nghiem, L. D. (2011). Removal of micropollutants by membrane bioreactor under temperature variation. J. Membr. Sci., 383 (1-2), 144-151. https://doi.org/10.1016/j.memsci.2011.08.047 DOI: https://doi.org/10.1016/j.memsci.2011.08.047

Herrmann, J.-M., Guillard, C., & Pichat, P. (1993). Heterogeneous photocatalysis: an emerging technology for water treatment. Catal. Today, 17(1-2), 7-20. https://doi.org/10.1016/0920-5861(93)80003-J DOI: https://doi.org/10.1016/0920-5861(93)80003-J

Higgins, J. P. T., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557-560. https://doi.org/10.1136/bmj.327.7414.557 DOI: https://doi.org/10.1136/bmj.327.7414.557

Insel, G., Karagunduz, A., Aksel, M., Cokgor, E., Kor-Bicakci, G., Ozyildiz, G., Toroz, I., & Keskinler, B. (2018). Membrane integrated process for advanced treatment of high strength Opium Alkaloid wastewaters. Water Science and Technology, 77(7), 1899–1908. https://doi.org/10.2166/wst.2018.065 DOI: https://doi.org/10.2166/wst.2018.065

Iorhemen, O. T., Hamza, R. A., Tay, J. H. (2017). Membrane fouling control in membrane bioreactors (MBRs) using granular materials. Bioresour. Technol., 240, 9–24. https://doi.org/10.1016/j.biortech.2017.03.005 DOI: https://doi.org/10.1016/j.biortech.2017.03.005

Jaouad, Y., Villain-Gaimbier, M., Mandi, L., Marrot, B., & Ouazzani, N. (2020). Comparison of aerobic processes for olive mill wastewater treatment. Water Science and Technology, 81(9), 1914–1926. https://doi.org/10.2166/wst.2020.247 DOI: https://doi.org/10.2166/wst.2020.247

JBI. (2020). Critical Appraisal Tools: Checklist for Prevalence Studies. https://jbi.global/critical-appraisal-tools?fbclid=IwAR3FacyLiHDwqz4LD4qFu--8icYRSqes_SsNw6IqDNxr1HqmQTw8cWsBgXk

Jenkins, D., Richard, M. G., & Daigger, G. T. (2003). Manual on the causes and control of activated sludge bulking, foaming, and other solids separation problems (3rd ed). Lewis Publishers. DOI: https://doi.org/10.1201/9780203503157

Johansson, T. (2012). Application of Membrane Bioreactors in the Pulp and Paper Industry. [Master’s Thesis, Environmental and Aquatic Civil Engineering Program]. Uppsala University.

Keskes, S., Bouallagui, H., Godon, J. J., Abid, S., & Hambdi, M. (2013). Biological sludge reduction during abattoir wastewater treatment process using a sequencing batch aerobic system. Environ Technol., 34(3), 333–341. https://doi.org/10.1080/09593330.2012.696713 DOI: https://doi.org/10.1080/09593330.2012.696713

Khan, N. A., Hussain, A., Changani, F., & Hussain, K. (2017). Review on SBR (sequencing batch reactor) treatments technology of industrial wastewater. REST. J. Emerg. Trends Model Manuf., 3(4), 87–91. https://restpublisher.com/wp-content/uploads/2018/01/Review-on-SBR-Sequencing-Batch-Reactor-Treatments-Technology-of-Industrial-Wastewater.pdf

Kim, J. S., Lee, C. H., & Chun, H. D. (1998). Comparison of ultrafiltration characteristics between activated sludge and BAC sludge. Water Research, 32(11), 3443–3451. https://doi.org/10.1016/S0043-1354(98)00104-3 DOI: https://doi.org/10.1016/S0043-1354(98)00104-3

Kimura, K., Amy, G., Drewes, J. E., Heberer, T., Kim, T-U., & Watanabe, Y. (2003). Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. J. Membr. Sci., 227(1-2), 113-121. 2003. https://doi.org/10.1016/j.memsci.2003.09.005 DOI: https://doi.org/10.1016/j.memsci.2003.09.005

Kulkarni, P. (2013). Nitrophenol removal by simultaneous nitrification denitrification (SND) using T. pantotropha in sequencing batch reactors (SBR). Bioresour. Technol., 128, 273–280. https://doi.org/10.1016/j.biortech.2012.10.054 DOI: https://doi.org/10.1016/j.biortech.2012.10.054

Kwiecinska, A., Lajnert, R., & Bigda, R. (2017). Coke oven wastewater-formation, treatment and utilization methods - a review. Proceedings of ECOpole, 11(1), 19-28. http://dx.doi.org/10.2429/proc.2017.11(1)002

Li, H., Zhang, J., Shen, L., Chen, Z., Zhang, Y., Zhang, C., Li, Q., & Wang, Y. (2019). Production of polyhydroxyalkanoates by activated sludge: correlation with extracellular polymeric substances and characteristics of activated sludge. Chem. Eng. J., 361, 219-226. https://doi.org/10.1016/j.cej.2018.12.066 DOI: https://doi.org/10.1016/j.cej.2018.12.066

Li, H. Y., Yang, M., Zhang, Y., Yu, T., & Kamagata, Y. (2006). Nitrification performance and microbial community dynamics in a submerged membrane bioreactor with complete sludge retention. J. Biotechnol., 123(1), 60-70. https://doi.org/10.1016/j.jbiotec.2005.10.001 DOI: https://doi.org/10.1016/j.jbiotec.2005.10.001

Li, L., Xu G., & Yu H. (2017). Dynamic membrane filtration: formation, filtration, cleaning, and applications. Chemical Engineering & Technology, 41(1), 7-18. https://doi.org/10.1002/ceat.201700095 DOI: https://doi.org/10.1002/ceat.201700095

Liberati, A., Altaman, D. G., Tetzlaff,mJ., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. PloS Med., 6(7), e1000100. https://doi.org/10.1371/journal.pmed.1000100 DOI: https://doi.org/10.1371/journal.pmed.1000100

Lim, J.-W., Seng, C-E., Lim, P-E., Ng, S-L., & Sujari, A-N. A. (2011). Nitrogen removal in moving bed sequencing batch reactor using polyurethane foam cubes of various sizes as carrier materials. Bioresour. Technol., 102(21), 9876–9883. https://doi.org/10.1016/j.biortech.2011.08.014 DOI: https://doi.org/10.1016/j.biortech.2011.08.014

Littell, J. H., Corcoran, J., & Pillai, V. (2008). Systematic reviews and meta-analysis. Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780195326543.001.0001

Liu, Y., Wang, L., Wang, B., Cui, H., & Zhang, J. (2005). Performance improvement of hybrid membrane bioreactor with PAC addition for water reuse. Water Science and Technology, 52(10-11), 383–391. https://doi.org/10.2166/wst.2005.0715 DOI: https://doi.org/10.2166/wst.2005.0715

Liu, Y., Li, J., Guo, W., Ngo, H. H., Hu, J., & Gao, M-T. (2018). Use of magnetic powder to effectively improve the performance of sequencing batch reactors (SBRs) in municipal wastewater treatment. Bioresour. Technol., 248, 135-139. https://doi.org/10.1016/j.biortech.2017.06.069 DOI: https://doi.org/10.1016/j.biortech.2017.06.069

Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., Liang, S. & Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ., 473–474, 619-641. https://doi.org/10.1016/j.scitotenv.2013.12.065 DOI: https://doi.org/10.1016/j.scitotenv.2013.12.065

Manai, I., Miladi, B., Mselmi, A. E., Hamdi, M., & Bouallagui, H. (2017). Improvement of activated sludge resistance to shock loading by fungal enzyme addition during textile wastewater treatment. Environmental Technology, 38(7), 880–890. https://doi.org/10.1080/09593330.2016.1214623 DOI: https://doi.org/10.1080/09593330.2016.1214623

Marañón, E., Vázquez, I., Rodríguez, J., Costrillón, L., Fernández, Y., & López, H. (2008). Treatment of coke wastewater in a sequential batch reactor (SBR) at pilot plant scale. Bioresour. Technol., 99(10), 4192-4198. https://doi.org/10.1016/j.biortech.2007.08.081 DOI: https://doi.org/10.1016/j.biortech.2007.08.081

Mena, I. F., Diaz, E., Rodriguez, J. J., & Mohedano, A. F. (2019). Biological oxidation of choline-based ionic liquids in sequencing batch reactors. Journal of Chemical Technology and Biotechnology, 95(4), 922-931. https://doi.org/10.1002/jctb.5954 DOI: https://doi.org/10.1002/jctb.5954

Meng, F., Zhang, S., Oh, Y., Zhou, Z., Shin, H-S., & Chae, S-R. (2017). Fouling in membrane bioreactors: an updated review. Water Res., 114, 151-180. https://doi.org/10.1016/j.watres.2017.02.006 DOI: https://doi.org/10.1016/j.watres.2017.02.006

Monsalvo, V. M., Mohedano, A. F., Casas, J. A., & Rodríguez, J. J. (2009). Cometabolic biodegradation of 4-chlorophenol by sequencing batch reactors at different temperatures. Bioresour. Technol., 100(20), 4572-4578. https://doi.org/10.1016/j.biortech.2009.04.044 DOI: https://doi.org/10.1016/j.biortech.2009.04.044

Moore, A. W., Zytner, R. G., & Chang, S. (2016). Potential Water Reuse for High Strength Fruit and Vegetable Processor Wastewater with an MBR. Waiter Environment Research, 88(9), 852–870. https://doi.org/10.2175/106143016x14609975747649 DOI: https://doi.org/10.2175/106143016X14609975747649

Moo-Young, & M., Chisti, Y. (1994). Bioreactor applications in waste treatment. Res. Cons. Recycl., 11(1-4), 13-24. https://doi.org/10.1016/0921-3449(94)90075-2 DOI: https://doi.org/10.1016/0921-3449(94)90075-2

Munasinghe-Arachchige, S. P., Abeysiriwardana-Arachchige, I. S. A., Delanka-Pedige, H. M. K., & Nirmalakhandan, N. (2020). Sewage treatment process refinement and intensification using multi-criteria decision-making approach: a case study. J. Water Process Eng., 37, 101485. https://doi.org/10.1016/j.jwpe.2020.101485 DOI: https://doi.org/10.1016/j.jwpe.2020.101485

National Bureau of Statistics of China. (2015). China Statistical Yearbook. China Statistics Press.

Neoh, C. H., Noor, Z. Z., Mutamim, N. S. A., & Lim, C. K. (2016). Green technology in wastewater treatment technologies: integration of membrane bioreactor with various wastewater treatment systems. Chem. Eng. J., 283, 582–594. https://doi.org/10.1016/j.cej.2015.07.060 DOI: https://doi.org/10.1016/j.cej.2015.07.060

Niwa, T., Hatamoto, M., Yamatashita, T., Noguchi, H., Takase, O., Kekre, K. A., Ang, W. S., Tao, G., Seah, H., & Yamaguchi, T. (2016). Demonstration of a full-scale plant using an UASB followed by a ceramic MBR for the reclamation of industrial wastewater. Bioresource Technology, 218, 1–8. https://doi.org/10.1016/j.biortech.2016.06.036 DOI: https://doi.org/10.1016/j.biortech.2016.06.036

Oliveira, G. S. S., Araújo, C. V. de M., & Fernandes, J. G. S. (2009). Microbiologia de sistema de lodos ativados e sua relação com o tratamento de efluentes industriais: A experiência da Cetrel. Revista Engenharia Sanitária e Ambiental, 14(2), 183-192. https://doi.org/10.1590/S1413-41522009000200006 DOI: https://doi.org/10.1590/S1413-41522009000200006

Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination-a review. Sci. Total Environ., 409(20), 4141-4166. https://doi.org/10.1016/j.scitotenv.2010.08.061 DOI: https://doi.org/10.1016/j.scitotenv.2010.08.061

Orhon, D. (2015). Evolution of the activated sludge process: the first 50 years. J. Chem. Technol. Biotechnol., 90(4), 608–640. https://doi.org/10.1002/jctb.4565 DOI: https://doi.org/10.1002/jctb.4565

Palani, K. N., Ramasamy, N., Palaniappan, K. V., Huh, Y. S., & Natesan, B. (2019). Development of integrated membrane bioreactor and numerical modeling to mitigate fouling and reduced energy consumption in pharmaceutical wastewater treatment. Journal of Industrial and Engineering Chemistry, 76, 150–159. https://doi.org/10.1016/j.jiec.2019.03.028 DOI: https://doi.org/10.1016/j.jiec.2019.03.028

Patel, S., Kundu, S., Halder, P., Ratnnayake, N., Marzbali, M. H., Aktar, S., Selezneva, E., Paz-Ferreiro, J., Surupaneni, A., De Figueiredo, C. C., Sharma, A., Megharaj, M., & Shah, K. (2020). A critical literature review on biosolids to biochar: an alternative biosolids management option. Rev Environ Sci Biotechnol, 19(4), 807-841. https://doi.org/10.1007/s11157-020-09553-x DOI: https://doi.org/10.1007/s11157-020-09553-x

Patoine, A., Manuel, M. F., Haeari, J. A., & Guiot, S. R. (1997). Toxicity reduction and removal of dehydroabietic and abietic acids in a continuous anaerobic reactor. Water Research, 31(4), 825-831. https://doi.org/10.1016/S0043-1354(96)00307-7 DOI: https://doi.org/10.1016/S0043-1354(96)00307-7

Paździor, K., Klepacz-Smólka, A., Wrebiak, J., Liwarska-Bizukojć, E., & Ledakowicz, S. (2016). Biodegradability of industrial textile wastewater – batch tests. Water Science and Technology, 74(5), 1079–1087. https://doi.org/10.2166/wst.2016.288 DOI: https://doi.org/10.2166/wst.2016.288

Pitás, V., Somogyi, V., Kárpáti, Á., Thury, P., & Fráter, T. (2020). Reduction of chemical oxygen demand in a conventional activated sludge system treating coke oven wastewater. Journal of Cleaner Production, 273, 122482. https://doi.org/10.1016/j.jclepro.2020.122482 DOI: https://doi.org/10.1016/j.jclepro.2020.122482

Popple, T., Williams, J. B., May, E., Mills, G. A., & Oliver, R. (2016). Evaluation of a sequencing batch reactor sewage treatment rig for investigating the fate of radioactively labelled pharmaceuticals: case study of propranolol. Water Res., 88, 83–92. https://doi.org/10.1016/j.watres.2015.09.033 DOI: https://doi.org/10.1016/j.watres.2015.09.033

Qu, X., Gao, W. J., Han, M. N., Chen, A., & Liao, B. Q. (2012). Integrated thermophilic submerged aerobic membrane bioreactor and electrochemical oxidation for pulp and paper effluent treatment – towards system closure. Bioresource Technology, 116, 1–8. https://doi.org/10.1016/j.biortech.2012.04.045 DOI: https://doi.org/10.1016/j.biortech.2012.04.045

Rahman, T. U., Roy, H., Islam, Md. R., Tahmid, M., Fariha, A., Mazumder, A., Tasnim, N., Pervez, Md. N., Cai, Y., Naddeo, V., & Islam, Md. S. (2023). The advancement in membrane bioreactor (MBR) technology toward sustainable industrial wastewater management. MembraneIs, 13(2), 181. https://doi.org/10.3390/membranes13020181 DOI: https://doi.org/10.3390/membranes13020181

Ramaswami, S., Behrendt, J., Gulyas, H., & Otterpohl, R. (2016). Pretreatment of Wastewater from Licorice Processing. A Preliminary Evaluation. Water Environment Research, 88(11), 2032–2039. https://www.jstor.org/stable/26662014 DOI: https://doi.org/10.2175/106143016X14733681695249

Ren, H., Geng, J., Huo, H., Xu. K., Huaang, H., Hu. H., & Ren, H. (2018). Bioaugmentated activated sludge degradation of progesterone: kinetics and mechanism. Chem. Eng. J., 352, 214-224. https://doi.org/10.1016/j.cej.2018.06.159 DOI: https://doi.org/10.1016/j.cej.2018.06.159

Revilla, M., Galán, B., & Viguri, J. R. (2016). Analysis and modelling of predation on biofilm activated sludge process: Influence on microbial distribution, sludge production and nutrient dosage. Bioresource Technology, 220, 572–583. https://doi.org/10.1016/j.biortech.2016.08.107 DOI: https://doi.org/10.1016/j.biortech.2016.08.107

Rodríguez-Rodríguez, C. E., Jelić, A. Pereira, M. A., Sousa, D. Z., Petrović, M., Alves, M. M., Barceló, D., Caminal, G., & Vicent, T. (2012). Bioaugmentation of sewage sludge with Trametes versicolor in solid-phase biopiles produces degradation of pharmaceuticals and affects microbial communities. Environ Sci Technol., 46(21), 12012–12020. https://doi.org/10.1021/es301788n DOI: https://doi.org/10.1021/es301788n

Rosenberger, S., Krüger, U., Witzig, R., Manz, W., Szewzyk, U., & Kraume, M. (2002). Performance of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater. Water Res., 36(2), 413-420. https://doi.org/10.1016/S0043-1354(01)00223-8 DOI: https://doi.org/10.1016/S0043-1354(01)00223-8

Saleem, M., Spagni, A., Alibardi, L., Bertucco, A., & Lavagnolo, M. C. (2018). Assessment of dynamic membrane filtration for biological treatment of old landfill leachate. J. Environ Manag., 213, 27–35. https://doi.org/10.1016/j.jenvman.2018.02.057 DOI: https://doi.org/10.1016/j.jenvman.2018.02.057

Sanchis, S., Polo, A.M., Tobajas, M., Rodriguez, J. J., & Mohedano, A. F. (2014). Strategies to evaluate biodegradability: Application to chlorinated herbicides. Environ Sci. Pollut. Res., 21, 9445–9452. https://doi.org/10.1007/s11356-013-2130-y DOI: https://doi.org/10.1007/s11356-013-2130-y

Sant’anna, G. L. Jr. (2010). Biological treatment of effluents: fundamentals and applications. Interciência.

Santos, E. M. A., Sampaio, G. M. M. S., Leitão, R. C., Facó, A. M., Menezes, E. A., & Santaella, S. T. (2006). Influência do tempo de detenção hidráulica em um sistema UASB seguido de um reator biológico com fungos para tratar efluentes de indústria de castanha de caju. Revista Engenharia Sanitária e Ambiental, 11(1), 39-45. https://doi.org/10.1590/S1413-41522006000100006 DOI: https://doi.org/10.1590/S1413-41522006000100006

Sawadogo, B., Konaté, Y., Lesage, G., Zaviska, F., Mannot, M., Heran, M., & Karambiri, H. (2018). Brewery wastewater treatment using MBR coupled with nanofiltration or electrodialysis: biomass acclimation and treatment efficiency. Water Science and Technology, 77(11), 2624–2634. https://doi.org/10.2166/wst.2018.232 DOI: https://doi.org/10.2166/wst.2018.232

Seo, G. T., Ahan, H. I., Kim, J. T., Lee, Y. J., & Kim, I. S. (2004). Domestic wastewater reclamation by submerged membrane bioreactor with high concentration powdered activated carbon for stream restoration. Water Science and Technology, 50(2), 173–178. https://pubmed.ncbi.nlm.nih.gov/15344788/ DOI: https://doi.org/10.2166/wst.2004.0117

Singleton, J. (1994). Microbial metabolism of xenobiotics: Fundamental and applied research. J. Chem Technol. Biotechnol., 59(1), 9-23. https://doi.org/10.1002/jctb.280590104 DOI: https://doi.org/10.1002/jctb.280590104

Snyder, S. A., Adham, S., Redding, A. M., Cannon, F. S., DeCarolis, J., Oppenheimer, J., Wert, E. C., & Yoon, Y. (2007). Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination, 202(1-3),156-181. https://doi.org/10.1016/j.desal.2005.12.052 DOI: https://doi.org/10.1016/j.desal.2005.12.052

Solís, R. R., Rivas, F. J., Ferreira, L. C., Pirra, A., & Peres, J. A. (2018). Integrated aerobic biological–chemical treatment of winery wastewater diluted with urban wastewater. LED-based photocatalysis in the presence of monoperoxysulfate. Journal of Environmental Science and Health, 53(2), 124–131. https://doi.org/10.1080/10934529.2017.1377584 DOI: https://doi.org/10.1080/10934529.2017.1377584

Sun, X., & Zhang, J. (2010). Qian yi gao xiao xue shu lun wen jiang li xian zhuang. Science and Technology Innovation Herald, 2010(35), 227-229.

Tan, T. W., Ng, H. Y., & Ong, S. L. (2008). Effect of mean cell residence time on the performance and microbial diversity of pre-denitrification submerged membrane bioreactors. Chemosphere, 70(3), 387-396. https://doi.org/10.1016/j.chemosphere.2007.07.003 DOI: https://doi.org/10.1016/j.chemosphere.2007.07.003

Tchobanoglous, G., Darby, J., Bourgeous, K., McArdle, J., Genest, P., & Tylla, M. (1998). Ultrafiltration as an advanced tertiary treatment process for municipal wastewater. Desalination, 119(1-3), 315-321. https://doi.org/10.1016/S0011-9164(98)00175-1 DOI: https://doi.org/10.1016/S0011-9164(98)00175-1

Ubay Çokgör, E., Sözen, S., Orhon, D., & Henze, M. (1998). Respirometric analysis of activated sludge behaviour-I: assessment of the readily biodegradable substrate. Water Research, 32(2), 461-475. https://doi.org/10.1016/S0043-1354(97)00209-1 DOI: https://doi.org/10.1016/S0043-1354(97)00209-1

Ugwuanyi, E. D., Nwokediegwu, Z. Q. S., Dada, M. A., Majemite, M. T., & Obaigbena, A. (2024). Review of emerging technologies for nutrient removal in wastewater treatment. World Journal of Advanced Research and Reviews, 21(02), 1737–1749. http://dx.doi.org/10.30574/wjarr.2024.21.2.0520 DOI: https://doi.org/10.30574/wjarr.2024.21.2.0520

United Nations. (2015, Oct. 21). Transforming Our World: The 2030 Agenda for Sustainable Development. https://sdgs.un.org/2030agenda

Van Haandel, A. C., & Van Der Lubbe, J. G. M. (2012). Handbook of Biological Wastewater Treatment: Design and Optimisation of Activated Sludge Systems (2nd ed.). IWA Publishing. DOI: https://doi.org/10.2166/9781780400808

Vergine, P., Salerno, C., Berardi, G., Pappagallo, G., & Pollice, A. (2020). The Self-Forming Dynamic Membrane BioReactor (SFD MBR) as a suitable technology for agro-industrial wastewater treatment. New Biotechnology, 56, 87–95. https://doi.org/10.1016/j.nbt.2019.12.005 DOI: https://doi.org/10.1016/j.nbt.2019.12.005

Villaverde, S., García Encina, M. L., & Fernández-Polanco, F. (2000). New operational strategy for SBR technology for total nitrogen removal from industrial wastewaters highly loaded with nitrogen. Water Science and Technology, 41(12), 85-93. https://doi.org/10.2166/wst.2000.0246 DOI: https://doi.org/10.2166/wst.2000.0246

Von Sperling, M. (2014). Introdução à qualidade das águas e ao tratamento de esgotos (4th ed). UFMG.

Von Sperling, M. (2012). Princípios do tratamento biológico de águas residuárias: lodos ativados (3rd ed). UFMG.

Shi, J., Huang, W., Han, H., & Xu, C. (2021) Pollution control of wastewater from the coal chemical industry in China: Environmental management policy and technical standards. Renewable and Sustainable Energy Reviews, 143, 110883. https://doi.org/10.1016/j.rser.2021.110883 DOI: https://doi.org/10.1016/j.rser.2021.110883

Wake, H. (2005). Oil refineries: a review of their ecological impacts on the aquatic environment. Estuar Coast Shelf Sci., 62(1), 131–140. https://doi.org/10.1016/j.ecss.2004.08.013 DOI: https://doi.org/10.1016/j.ecss.2004.08.013

Wang, D., Hu, Q-Y., Wang, C., & Ji, M. (2016). Evaluating the removal of organic fraction of commingled chemical industrial wastewater by activated sludge process augmented with powdered activated carbon. Arabian Journal of Chemistry, 9(2), S1951–S1961. https://doi.org/10.1016/j.arabjc.2015.08.031 DOI: https://doi.org/10.1016/j.arabjc.2015.08.031

Wang, L. (2016). Gao xiao zai guo jia ke ji jiang li zhi du zhong huo jiang xian xiang ji qi ying xiang yin su de yan jiu: yi jiao yu bu zhi shu gao xiao wei shu ju cai ji dui xiang. [Master of Arts]. East China Normal University.

Wang, X., Chang, V. W. C., & Tang, C. Y. (2016). Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation: advances, challenges, and prospects for the future. J. Membr. Sci., 504, 113-132. https://doi.org/10.1016/j.memsci.2016.01.010 DOI: https://doi.org/10.1016/j.memsci.2016.01.010

Yáñez-Hernández, O., Ríos-Lira, A. J., Pantoja-Pacheco, Y. V., Ruelas-Santonyo, E. A., Asato-España, M. L., & Valdovinos-García, E. M. (2024). Characterization of Wastewater in an Activated Sludge Treatment Plant of the Food Sector. Water, 16(18), 2647. https://doi.org/10.3390/w16182647 DOI: https://doi.org/10.3390/w16182647

Publicado

2025-05-27

Como Citar

Tamburus, I. E., Oliveira, C. J. F. de, Rodrigues, W. F., & Anhê, A. C. B. M. (2025). Eficiência de remoção de demanda química de oxigênio de efluentes industriais por sistema de lodos ativados e suas variantes: uma revisão sistemática e metanálise. Ciência E Natura, 47, e84287. https://doi.org/10.5902/2179460X84287

Edição

Seção

Meio Ambiente

Artigos mais lidos pelo mesmo(s) autor(es)

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.