Eficiência de remoção de demanda química de oxigênio de efluentes industriais por sistema de lodos ativados e suas variantes: uma revisão sistemática e metanálise
DOI:
https://doi.org/10.5902/2179460X84287Palavras-chave:
Processos biológicos, Resíduos líquidos, Tratamento biológico de águas residuaisResumo
O sistema de lodos ativados é amplamente utilizado em todo o mundo para tratar tipos de resíduos complexos, devido ao seu alto nível de eficiência. O objetivo do presente estudo é identificar a eficiência de remoção de demanda química de oxigênio em efluentes industriais por sistemas de lodos ativados e suas variantes, através de uma revisão sistemática e metanálise. A busca foi realizada nas bases de dados Scopus e ScienceDirect; dois pesquisadores independentes selecionaram estudos publicados entre 2016 e 2020 para coletar os dados. Os tipos de resíduos industriais apresentaram grande variação inicial de DQO, mesmo dentro dos mesmos segmentos e tipologias; além disso, alguns sistemas de lodos ativados apresentaram pré ou pós-tratamento. A revisão sistemática e metanálise permitiram apresentar que a eficiência global de remoção da demanda química de oxigênio em efluentes industriais por sistemas de lodos ativados e suas variantes utilizados globalmente chega a 83,00% (IC = 82,00 a 93,00). Além disso, o presente estudo é o primeiro sobre esse tema; portanto, servirá de referência para futuros estudos sobre o assunto.
Downloads
Referências
Abdulgader, M., Yu, Q. J., Zinatizadeh, A., & Williams, P. (2009). Biological treatment of milk processing wastewater in a sequencing batch flexible fibre biofilm reactor. Asia Pac. J. Chem. Eng., 4(5), 698–703. https://doi.org/10.1002/apj.320 DOI: https://doi.org/10.1002/apj.320
Abdulgader, M., Yu, Q. J., Zinatizadeh, A., & Williams, P. (2020). Performance and kinetics analysis of an aerobic sequencing batch flexible fibre biofilm reactor for milk processing wastewater treatment. Journal of Environmental Management, 255, 109793. https://doi.org/10.1016/j.jenvman.2019.109793 DOI: https://doi.org/10.1016/j.jenvman.2019.109793
Abu Hasan, H., Abdullah, S. R. S., Al-Attabi, A. W. N., Nash, D. A. H., Anuar, N., Rahman, N. A., & Titah, H. S. (2016). Removal of ibuprofen, ketoprofen, COD and nitrogen compounds from pharmaceutical wastewater using aerobic suspension-sequencing batch reactor (ASSBR). Sep. Purif. Technol., 157, 215-221. https://doi.org/10.1016/j.seppur.2015.11.017 DOI: https://doi.org/10.1016/j.seppur.2015.11.017
Abyar, H., Younesi, H., & Nowrouzi, M. (2020). Life cycle assessment of A2O bioreactor for meat processing wastewater treatment: an endeavor toward the achievement of environmentally sustainable development. J. Clean. Prod., 257, 120575. https://doi.org/10.1016/j.jclepro.2020.120575 DOI: https://doi.org/10.1016/j.jclepro.2020.120575
Agresti, A., & Coull B. A. (1998). Approximate is better than "exact" for interval estimation of binomial proportions. The American Statistician, 52(2), 119–26. https://doi.org/10.2307/2685469 DOI: https://doi.org/10.1080/00031305.1998.10480550
Aguiar, M. R. M. P., & Novaes, A. C. (2002). Removal of heavy metals from industrial effluents by aluminosilicates. New Chemistry, 25(6B), 1145-1154. https://doi.org/10.1590/S0100-40422002000700015 DOI: https://doi.org/10.1590/S0100-40422002000700015
Ahmadi, M., Amiri, N., Pirsaheb, M., & Amiri, P. (2016). Application of the central composite design for the treatment of soft drink factory wastewater in two-stage aerobic sequencing batch reactors combined with ozonation. Desalination and Water Treatment, 57(41), 19077-19086. https://doi.org/10.1080/19443994.2015.1103305 DOI: https://doi.org/10.1080/19443994.2015.1103305
Alkmim, A. R., Da Costa, P. R., Moser, P. B., França, L. S. Neta, Santiago, V. M. J., Cerqueira, A. C., Reis, B. G., & Amaral, M. C. S. (2017). Potential use of membrane bioreactor to treat petroleum refinery effluent: comprehension of dynamic of organic matter removal, fouling characteristics and membrane lifetime. Bioprocess and Biosystems Engineering, 40(12), 1839–1850. https://doi.org/10.1007/s00449-017-1837-4 DOI: https://doi.org/10.1007/s00449-017-1837-4
Andern, W. T. & Lockett, W. T. (1994). Experiments on the Oxidation of Sewage without the Aid of Filters. J. Soc. Chem. 33, 523. DOI: https://doi.org/10.1002/jctb.5000331005
Andrade, L. H., Motta, G. E., & Amaral, M. C. S. (2013). Treatment of dairy wastewater with a membrane bioreactor. Brazilian Journal of Chemical Engineering, 30(4), 759–770. https://doi.org/10.1590/S0104-66322013000400008 DOI: https://doi.org/10.1590/S0104-66322013000400008
Arango, H. G. (2001). Bioestatística teórica e computacional. Guanabara Koogan.
Araújo, C. V. M., Nascimento, R. B., Oliveira, C. A., Strotmann, U. J., & Da Silva, E. M. (2005). The use of Microtox to assess toxicity removal of industrial effluents from the industrial district of Camaçari (BA, Brazil). Chemosphere, 58(9), 1277-1281. https://doi.org/10.1016/j.chemosphere.2004.10.036 DOI: https://doi.org/10.1016/j.chemosphere.2004.10.036
Associação Brasileira de Normas Técnicas. (1987). NBR 9800: Critérios para lançamento de efluentes líquidos industriais no sistema coletor público de esgoto sanitário - Procedimento. ABNT.
Bakare, B. F., Shabangu, K., & Chetty, M. (2017). Brewery wastewater treatment using laboratory scale aerobic sequencing batch reactor. South African Journal of Chemical Engineering, 24, 128–134. https://doi.org/10.1016/j.sajce.2017.08.001 DOI: https://doi.org/10.1016/j.sajce.2017.08.001
Basu, S. Kaushik, A., Saranya, P., Batra, V. S., & Balakrishnan, M. (2016). High strength distillery wastewater treatment by a PAC-MBR with low PAC dosage. Water Science and Technology, 73(5), 1104–1111. https://doi.org/10.2166/wst.2015.585 DOI: https://doi.org/10.2166/wst.2015.585
BCC Research. (2008). Membrane Bioreactors: Global Markets. BCC Publishing.
Baresel, C., Harding, M., & Fang, J. (2019). Ultrafiltration/granulated active carbon-biofilter: efficient removal of a broad range of micropollutants. Applied Sciences, 9(4), 710. https://doi.org/10.3390/app9040710 DOI: https://doi.org/10.3390/app9040710
Batstone, D. J., Hülsen, T., Mehta, C. M., & Keller, J. (2015). Platforms for energy and nutrient recovery from domestic wastewater: a review. Chemosphere, 140, 2-11. https://doi.org/10.1016/j.chemosphere.2014.10.021 DOI: https://doi.org/10.1016/j.chemosphere.2014.10.021
Beal, L. L., Monteggia, L. O., & Giustina, S. V. D. (2006). Otimização de uma estação de tratamento de efluentes de uma indústria de embalagens de papel. Revista Engenharia Sanitária e Ambiental, 11(3), 283-289. https://doi.org/10.1590/S1413-41522006000300012 DOI: https://doi.org/10.1590/S1413-41522006000300012
Bento, A. P., Sezerino, P. H., Philippi, L. S., Reginatto, V., & Lapolli, F. R. (2005). Caracterização da microfauna em estação de tratamento de esgotos do tipo lodos ativados: um instrumento de avaliação e controle do processo. Revista Engenharia Sanitária e Ambiental, 10(4), 329-338. https://doi.org/10.1590/S1413-41522005000400009 DOI: https://doi.org/10.1590/S1413-41522005000400009
Borenstein, M., Hedges, L. V., Higgis, J. P. T., & Rothstein, H. R. (2010). A basic introduction to fixed-effect and random-effects models for meta-analysis. Research Synthesis Methods, 1(2), 97–111. https://doi.org/10.1002/jrsm.12 DOI: https://doi.org/10.1002/jrsm.12
Borkar R., Gulhane, M., & Kotangale, A. (2013). Moving Bed Biofilm Reactor – A New Perspective in Wastewater Treatment. IOSR-JESTFT, 6(6), 15-21. http://dx.doi.org/10.9790/2402-0661521 DOI: https://doi.org/10.9790/2402-0661521
Bui, X. T., Vo, T. P. T., Ngo, H. H., Guo, W. S., & Nguyen, T. T. (2016). Multicriteria assessment of advanced treatment technologies for micropollutants removal at large-scale applications. Sci. Total Environ., 563–564, 1050-1067. https://doi.org/10.1016/j.scitotenv.2016.04.191 DOI: https://doi.org/10.1016/j.scitotenv.2016.04.191
Bustillo-Lecompte, C. F., & Mehrvar, M. (2015). Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: a review on trends and advances. J. Environ. Manag., 161, 287-302. https://doi.org/10.1016/j.jenvman.2015.07.008 DOI: https://doi.org/10.1016/j.jenvman.2015.07.008
Cai, D., Huang, J. Liu, G., Li, M., Yu, Y., & Meng, F. (2018). Effect of support material pore size on the filtration behavior of dynamic membrane bioreactor. Bioresour. Technol., 255, 359–363. https://doi.org/10.1016/j.biortech.2018.02.007 DOI: https://doi.org/10.1016/j.biortech.2018.02.007
Cañizares, P., Lobato, J., Paz, R., Rodrigo, M. A., & Sáez, C. (2007). Advanced oxidation processes for the treatment of olive-oil mills wastewater. Chemosphere, 67(4), 832-838. https://doi.org/10.1016/j.chemosphere.2006.10.064 DOI: https://doi.org/10.1016/j.chemosphere.2006.10.064
Cao, S. M. S., Dezotti, M., & Bassin, J. P. (2016). MBBR followed by microfiltration and reverse osmosis as a compact alternative for advanced treatment of a pesticide-producing industry wastewater towards reuse. The Canadian Journal of Chemical Engineering, 94(9), 1657–1667. https://doi.org/10.1002/cjce.22542 DOI: https://doi.org/10.1002/cjce.22542
Cecen, F., Erdincler, A., & Kilic, E. (2003). Effect of powdered activated carbon addition on sludge dewater ability and substrate removal in landfill leachate treatment. Advances in Environmental Research, 7(3), 707–713. https://doi.org/10.1016/S1093-0191(02)00033-3 DOI: https://doi.org/10.1016/S1093-0191(02)00033-3
Chamorro, S., Vergara, J. P., Jarpa, M. Hernandez, V., Becerra, J., & Vidal, G. (2016). Removal of stigmasterol from Kraft mill effluent by aerobic biological treatment with steroidal metabolite detection. Journal of Environmental Science and Health, 51(12), 1012–1017. https://doi.org/10.1080/10934529.2016.1198190 DOI: https://doi.org/10.1080/10934529.2016.1198190
Chen, Y., Zhang, X. B., & Li, J. (2016). Advanced treatment of oilfield production wastewater by an integration of coagulation/flotation, catalytic ozonation and biological processes. Environmental Technology, 37(19), 2536–2544. https://doi.org/10.1080/09593330.2016.1153159 DOI: https://doi.org/10.1080/09593330.2016.1153159
Chisti, Y. (1998). Pneumatically agitated bioreactors in industrial and environmental bioprocessing: Hydrodynamics, hydraulics and transport phenomena. Appl. Mech. Rev., 51(1), 33-112. https://doi.org/10.1115/1.3098989 DOI: https://doi.org/10.1115/1.3098989
Choi, J.-H., Dockko, S., Fukushi, K., & Yamamoto, K. (2002). A novel application of a submerged nanofiltration membrane bioreactor (NF MBR) for wastewater treatment. Desalination, 146(1-3), 413-420. https://doi.org/10.1016/S0011-9164(02)00524-6 DOI: https://doi.org/10.1016/S0011-9164(02)00524-6
Ciocca, D. R., & Delgado, G. (2017). The reality of scientific research in Latin America; an insider’s perspective. Cell Stress and Chaperones, 22(6), 847–852. https://doi.org/10.1007/s12192-017-0815-8 DOI: https://doi.org/10.1007/s12192-017-0815-8
Cokgor, E. U., Insel, G., Aydin, E., & Orhon, D. (2009). Respirometric evaluation of a mixture of organic chemicals with different biodegradation kinetics. Journal of Hazardous Materials, 161(1), 35–41. https://doi.org/10.1016/j.jhazmat.2008.03.051 DOI: https://doi.org/10.1016/j.jhazmat.2008.03.051
Cunha, D. L., De Paula, L. M., Da Silva, S. M. C., Bila, D. M., De Fonseca, E. M., & Oliveira, J. L. da M. (2017). Ocorrência e remoção de estrogênios por processos de tratamento biológico de esgotos. Rev. Ambient. Água, 12(2), 249-262. https://doi.org/10.4136/ambi-agua.1992 DOI: https://doi.org/10.4136/ambi-agua.1992
Da Mata, R. A., Silva, C. M., Zanuncio, J. C., & Materazzi, L. B. (2019). Effects of electrostatic precipitators ash leachate (EPAL) from recovery boilers on the biological treatment of effluent of kraft pulp mills. Science of The Total Environment, 659, 905–911. https://doi.org/10.1016/j.scitotenv.2018.12.413 DOI: https://doi.org/10.1016/j.scitotenv.2018.12.413
Da Motta, M., Pons, M. N., Roche, N., Vivier, H., Amaral, A. L., Ferreira, E. C., & Mota, M. (2003). Estudo do funcionamento de estações de tratamento de esgotos por análise de imagem: validações e estudo de caso. Revista Engenharia Sanitária e Ambiental, 8(3), 170-181. file:///E:/Estudo_do_funcionamento_de_estacoes_de_tratamento_.pdf
Davies, P. S. (2005). The Biological Basis of Wastewater Treatment. Strathkelvin Instrument Ltd.
Değermenci, N. Cengiz, î. Yildiz, E., & Nuhoglu, A. (2016). Performance investigation of a jet loop membrane bioreactor for the treatment of an actual olive mill wastewater. Journal of Environmental Management, 184, 441-447. https://doi.org/10.1016/j.jenvman.2016.10.014 DOI: https://doi.org/10.1016/j.jenvman.2016.10.014
Delanka-Pedige, H. M. K. Himali, M. K., Munashinghe-Arachchige, S. P., Aberysiriwardana-Arachchige, I. S. A., Zhang, Y., & Nirmalakhandan, N. (2020). Algal pathway towards meeting United Nation’s sustainable development goal 6. Int. J. Sustain. Dev. World Ecol., 27(8), 678-686. https://doi.org/10.1080/13504509.2020.1756977 DOI: https://doi.org/10.1080/13504509.2020.1756977
Ding, D., Feng, C., Jin, Y., Hao, C., Zhao, Y., & Suemura, T. (2011). Domestic sewage treatment in a sequencing batch biofilm reactor (SBBR) with an intelligent controlling system. Desalination, 276(1-3), 260–265. https://doi.org/10.1016/j.desal.2011.03.059 DOI: https://doi.org/10.1016/j.desal.2011.03.059
Djelal, H., & Amrane, A. (2013). Biodegradation by bioaugmentation of dairy wastewater by fungal consortium on a bioreactor lab-scale and on a pilot-scale. J Environ Sci., 25(9), 1906–1912. https://doi.org/10.1016/S1001-0742(12)60239-3 DOI: https://doi.org/10.1016/S1001-0742(12)60239-3
Duan, W. Ronen, A., De Leon, J. V., Dudchenko, A., Yao, S., Corbala-Delgado, J., Yan, A., Matsumoto, M., & Jassby, D. (2016). Treating anaerobic sequencing batch reactor effluent with electrically conducting ultrafiltration and nanofiltration membranes for fouling control. Journal of Membrane Science, 504, 104-112. https://doi.org/10.1016/j.memsci.2016.01.011 DOI: https://doi.org/10.1016/j.memsci.2016.01.011
Dutta, A., & Sarkar, S. (2015). Sequencing batch reactor for wastewater treatment: recent advances. Curr. Pollut. Rep., 1, 177–190. https://doi.org/10.1007/s40726-015-0016-y DOI: https://doi.org/10.1007/s40726-015-0016-y
Erkan, H. S., & Engin, G. O. (2017). The investigation of paper mill industry wastewater treatment and activated sludge properties in a submerged membrane bioreactor. Water Science and Technology, 76(7), 1715–1725. https://doi.org/10.2166/wst.2017.351 DOI: https://doi.org/10.2166/wst.2017.351
Ersahin M. E., Ozgun, H., Dereli, R. K., Ozturk, I., Roest, K., & Van Lier, J. B. (2012). A review on dynamic membrane filtration: materials, applications and future perspectives. Bioresour. Technol., 122, 196–206. https://doi.org/10.1016/j.biortech.2012.03.086 DOI: https://doi.org/10.1016/j.biortech.2012.03.086
Ersahin M. E., Tao, Y., Ozgun, H., Gimenez, J. B., Spanjers, H., & Van Lier, J. B. (2017). Impact of anaerobic dynamic membrane bioreactor configuration on treatment and filterability performance. J Membr Sci, 526, 387–394. https://doi.org/10.1016/j.memsci.2016.12.057 DOI: https://doi.org/10.1016/j.memsci.2016.12.057
Freire, R. S., Pelegrini, R., Kubota, L. T., Durán, N., & Peralta-Zamora, P. (2000). Novas tendências para o tratamento de resíduos industriais contendo espécies organocloradas. Química Nova, 23(4), 504-511. https://doi.org/10.1590/S0100-40422000000400013 DOI: https://doi.org/10.1590/S0100-40422000000400013
Fritzmann, C., Löwenberg, J., Wintgens, T., & Melin, T. (2007). State-of-the-art of reverse osmosis desalination. Desalination, 216(1-3), 1-76. https://doi.org/10.1016/j.desal.2006.12.009 DOI: https://doi.org/10.1016/j.desal.2006.12.009
Garcia Torres, E., Morales, P. R., Zamora, A. G., Sánchez, E. R., Calderón, E. H. O., Romero, J. de. J. A., & Rincón, E. Y. C. (2022). Consumption of water contaminated by nitrate and its deleterious effects on the human thyroid gland: a review and update. International Journal of Environmental Health Research, 32(5), 984-1001. https://doi.org/10.1080/09603123.2020.1815664 DOI: https://doi.org/10.1080/09603123.2020.1815664
Ghasemian, P., Abdollahzadeh Sharghi, E., & Davarpanah, L. (2017). The Influence of Short Values of Hydraulic and Sludge Retention Time on Performance of a Membrane Bioreactor Treating Sunflower Oil Refinery Wastewater. International Journal of Engineering, 30(10), 1417-1424. http://dx.doi.org/10.5829/ije.2017.30.10a.01 DOI: https://doi.org/10.5829/ije.2017.30.10a.01
Gray, N. F. (1990). Activated Sludge: Theory and Practice. Oxford Science Publications.
Hai, F. I., Tessmer, K., Nguyen, L. N., Kong, J., Price, W. E., & Nghiem, L. D. (2011). Removal of micropollutants by membrane bioreactor under temperature variation. J. Membr. Sci., 383 (1-2), 144-151. https://doi.org/10.1016/j.memsci.2011.08.047 DOI: https://doi.org/10.1016/j.memsci.2011.08.047
Herrmann, J.-M., Guillard, C., & Pichat, P. (1993). Heterogeneous photocatalysis: an emerging technology for water treatment. Catal. Today, 17(1-2), 7-20. https://doi.org/10.1016/0920-5861(93)80003-J DOI: https://doi.org/10.1016/0920-5861(93)80003-J
Higgins, J. P. T., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557-560. https://doi.org/10.1136/bmj.327.7414.557 DOI: https://doi.org/10.1136/bmj.327.7414.557
Insel, G., Karagunduz, A., Aksel, M., Cokgor, E., Kor-Bicakci, G., Ozyildiz, G., Toroz, I., & Keskinler, B. (2018). Membrane integrated process for advanced treatment of high strength Opium Alkaloid wastewaters. Water Science and Technology, 77(7), 1899–1908. https://doi.org/10.2166/wst.2018.065 DOI: https://doi.org/10.2166/wst.2018.065
Iorhemen, O. T., Hamza, R. A., Tay, J. H. (2017). Membrane fouling control in membrane bioreactors (MBRs) using granular materials. Bioresour. Technol., 240, 9–24. https://doi.org/10.1016/j.biortech.2017.03.005 DOI: https://doi.org/10.1016/j.biortech.2017.03.005
Jaouad, Y., Villain-Gaimbier, M., Mandi, L., Marrot, B., & Ouazzani, N. (2020). Comparison of aerobic processes for olive mill wastewater treatment. Water Science and Technology, 81(9), 1914–1926. https://doi.org/10.2166/wst.2020.247 DOI: https://doi.org/10.2166/wst.2020.247
JBI. (2020). Critical Appraisal Tools: Checklist for Prevalence Studies. https://jbi.global/critical-appraisal-tools?fbclid=IwAR3FacyLiHDwqz4LD4qFu--8icYRSqes_SsNw6IqDNxr1HqmQTw8cWsBgXk
Jenkins, D., Richard, M. G., & Daigger, G. T. (2003). Manual on the causes and control of activated sludge bulking, foaming, and other solids separation problems (3rd ed). Lewis Publishers. DOI: https://doi.org/10.1201/9780203503157
Johansson, T. (2012). Application of Membrane Bioreactors in the Pulp and Paper Industry. [Master’s Thesis, Environmental and Aquatic Civil Engineering Program]. Uppsala University.
Keskes, S., Bouallagui, H., Godon, J. J., Abid, S., & Hambdi, M. (2013). Biological sludge reduction during abattoir wastewater treatment process using a sequencing batch aerobic system. Environ Technol., 34(3), 333–341. https://doi.org/10.1080/09593330.2012.696713 DOI: https://doi.org/10.1080/09593330.2012.696713
Khan, N. A., Hussain, A., Changani, F., & Hussain, K. (2017). Review on SBR (sequencing batch reactor) treatments technology of industrial wastewater. REST. J. Emerg. Trends Model Manuf., 3(4), 87–91. https://restpublisher.com/wp-content/uploads/2018/01/Review-on-SBR-Sequencing-Batch-Reactor-Treatments-Technology-of-Industrial-Wastewater.pdf
Kim, J. S., Lee, C. H., & Chun, H. D. (1998). Comparison of ultrafiltration characteristics between activated sludge and BAC sludge. Water Research, 32(11), 3443–3451. https://doi.org/10.1016/S0043-1354(98)00104-3 DOI: https://doi.org/10.1016/S0043-1354(98)00104-3
Kimura, K., Amy, G., Drewes, J. E., Heberer, T., Kim, T-U., & Watanabe, Y. (2003). Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. J. Membr. Sci., 227(1-2), 113-121. 2003. https://doi.org/10.1016/j.memsci.2003.09.005 DOI: https://doi.org/10.1016/j.memsci.2003.09.005
Kulkarni, P. (2013). Nitrophenol removal by simultaneous nitrification denitrification (SND) using T. pantotropha in sequencing batch reactors (SBR). Bioresour. Technol., 128, 273–280. https://doi.org/10.1016/j.biortech.2012.10.054 DOI: https://doi.org/10.1016/j.biortech.2012.10.054
Kwiecinska, A., Lajnert, R., & Bigda, R. (2017). Coke oven wastewater-formation, treatment and utilization methods - a review. Proceedings of ECOpole, 11(1), 19-28. http://dx.doi.org/10.2429/proc.2017.11(1)002
Li, H., Zhang, J., Shen, L., Chen, Z., Zhang, Y., Zhang, C., Li, Q., & Wang, Y. (2019). Production of polyhydroxyalkanoates by activated sludge: correlation with extracellular polymeric substances and characteristics of activated sludge. Chem. Eng. J., 361, 219-226. https://doi.org/10.1016/j.cej.2018.12.066 DOI: https://doi.org/10.1016/j.cej.2018.12.066
Li, H. Y., Yang, M., Zhang, Y., Yu, T., & Kamagata, Y. (2006). Nitrification performance and microbial community dynamics in a submerged membrane bioreactor with complete sludge retention. J. Biotechnol., 123(1), 60-70. https://doi.org/10.1016/j.jbiotec.2005.10.001 DOI: https://doi.org/10.1016/j.jbiotec.2005.10.001
Li, L., Xu G., & Yu H. (2017). Dynamic membrane filtration: formation, filtration, cleaning, and applications. Chemical Engineering & Technology, 41(1), 7-18. https://doi.org/10.1002/ceat.201700095 DOI: https://doi.org/10.1002/ceat.201700095
Liberati, A., Altaman, D. G., Tetzlaff,mJ., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. PloS Med., 6(7), e1000100. https://doi.org/10.1371/journal.pmed.1000100 DOI: https://doi.org/10.1371/journal.pmed.1000100
Lim, J.-W., Seng, C-E., Lim, P-E., Ng, S-L., & Sujari, A-N. A. (2011). Nitrogen removal in moving bed sequencing batch reactor using polyurethane foam cubes of various sizes as carrier materials. Bioresour. Technol., 102(21), 9876–9883. https://doi.org/10.1016/j.biortech.2011.08.014 DOI: https://doi.org/10.1016/j.biortech.2011.08.014
Littell, J. H., Corcoran, J., & Pillai, V. (2008). Systematic reviews and meta-analysis. Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780195326543.001.0001
Liu, Y., Wang, L., Wang, B., Cui, H., & Zhang, J. (2005). Performance improvement of hybrid membrane bioreactor with PAC addition for water reuse. Water Science and Technology, 52(10-11), 383–391. https://doi.org/10.2166/wst.2005.0715 DOI: https://doi.org/10.2166/wst.2005.0715
Liu, Y., Li, J., Guo, W., Ngo, H. H., Hu, J., & Gao, M-T. (2018). Use of magnetic powder to effectively improve the performance of sequencing batch reactors (SBRs) in municipal wastewater treatment. Bioresour. Technol., 248, 135-139. https://doi.org/10.1016/j.biortech.2017.06.069 DOI: https://doi.org/10.1016/j.biortech.2017.06.069
Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., Liang, S. & Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ., 473–474, 619-641. https://doi.org/10.1016/j.scitotenv.2013.12.065 DOI: https://doi.org/10.1016/j.scitotenv.2013.12.065
Manai, I., Miladi, B., Mselmi, A. E., Hamdi, M., & Bouallagui, H. (2017). Improvement of activated sludge resistance to shock loading by fungal enzyme addition during textile wastewater treatment. Environmental Technology, 38(7), 880–890. https://doi.org/10.1080/09593330.2016.1214623 DOI: https://doi.org/10.1080/09593330.2016.1214623
Marañón, E., Vázquez, I., Rodríguez, J., Costrillón, L., Fernández, Y., & López, H. (2008). Treatment of coke wastewater in a sequential batch reactor (SBR) at pilot plant scale. Bioresour. Technol., 99(10), 4192-4198. https://doi.org/10.1016/j.biortech.2007.08.081 DOI: https://doi.org/10.1016/j.biortech.2007.08.081
Mena, I. F., Diaz, E., Rodriguez, J. J., & Mohedano, A. F. (2019). Biological oxidation of choline-based ionic liquids in sequencing batch reactors. Journal of Chemical Technology and Biotechnology, 95(4), 922-931. https://doi.org/10.1002/jctb.5954 DOI: https://doi.org/10.1002/jctb.5954
Meng, F., Zhang, S., Oh, Y., Zhou, Z., Shin, H-S., & Chae, S-R. (2017). Fouling in membrane bioreactors: an updated review. Water Res., 114, 151-180. https://doi.org/10.1016/j.watres.2017.02.006 DOI: https://doi.org/10.1016/j.watres.2017.02.006
Monsalvo, V. M., Mohedano, A. F., Casas, J. A., & Rodríguez, J. J. (2009). Cometabolic biodegradation of 4-chlorophenol by sequencing batch reactors at different temperatures. Bioresour. Technol., 100(20), 4572-4578. https://doi.org/10.1016/j.biortech.2009.04.044 DOI: https://doi.org/10.1016/j.biortech.2009.04.044
Moore, A. W., Zytner, R. G., & Chang, S. (2016). Potential Water Reuse for High Strength Fruit and Vegetable Processor Wastewater with an MBR. Waiter Environment Research, 88(9), 852–870. https://doi.org/10.2175/106143016x14609975747649 DOI: https://doi.org/10.2175/106143016X14609975747649
Moo-Young, & M., Chisti, Y. (1994). Bioreactor applications in waste treatment. Res. Cons. Recycl., 11(1-4), 13-24. https://doi.org/10.1016/0921-3449(94)90075-2 DOI: https://doi.org/10.1016/0921-3449(94)90075-2
Munasinghe-Arachchige, S. P., Abeysiriwardana-Arachchige, I. S. A., Delanka-Pedige, H. M. K., & Nirmalakhandan, N. (2020). Sewage treatment process refinement and intensification using multi-criteria decision-making approach: a case study. J. Water Process Eng., 37, 101485. https://doi.org/10.1016/j.jwpe.2020.101485 DOI: https://doi.org/10.1016/j.jwpe.2020.101485
National Bureau of Statistics of China. (2015). China Statistical Yearbook. China Statistics Press.
Neoh, C. H., Noor, Z. Z., Mutamim, N. S. A., & Lim, C. K. (2016). Green technology in wastewater treatment technologies: integration of membrane bioreactor with various wastewater treatment systems. Chem. Eng. J., 283, 582–594. https://doi.org/10.1016/j.cej.2015.07.060 DOI: https://doi.org/10.1016/j.cej.2015.07.060
Niwa, T., Hatamoto, M., Yamatashita, T., Noguchi, H., Takase, O., Kekre, K. A., Ang, W. S., Tao, G., Seah, H., & Yamaguchi, T. (2016). Demonstration of a full-scale plant using an UASB followed by a ceramic MBR for the reclamation of industrial wastewater. Bioresource Technology, 218, 1–8. https://doi.org/10.1016/j.biortech.2016.06.036 DOI: https://doi.org/10.1016/j.biortech.2016.06.036
Oliveira, G. S. S., Araújo, C. V. de M., & Fernandes, J. G. S. (2009). Microbiologia de sistema de lodos ativados e sua relação com o tratamento de efluentes industriais: A experiência da Cetrel. Revista Engenharia Sanitária e Ambiental, 14(2), 183-192. https://doi.org/10.1590/S1413-41522009000200006 DOI: https://doi.org/10.1590/S1413-41522009000200006
Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination-a review. Sci. Total Environ., 409(20), 4141-4166. https://doi.org/10.1016/j.scitotenv.2010.08.061 DOI: https://doi.org/10.1016/j.scitotenv.2010.08.061
Orhon, D. (2015). Evolution of the activated sludge process: the first 50 years. J. Chem. Technol. Biotechnol., 90(4), 608–640. https://doi.org/10.1002/jctb.4565 DOI: https://doi.org/10.1002/jctb.4565
Palani, K. N., Ramasamy, N., Palaniappan, K. V., Huh, Y. S., & Natesan, B. (2019). Development of integrated membrane bioreactor and numerical modeling to mitigate fouling and reduced energy consumption in pharmaceutical wastewater treatment. Journal of Industrial and Engineering Chemistry, 76, 150–159. https://doi.org/10.1016/j.jiec.2019.03.028 DOI: https://doi.org/10.1016/j.jiec.2019.03.028
Patel, S., Kundu, S., Halder, P., Ratnnayake, N., Marzbali, M. H., Aktar, S., Selezneva, E., Paz-Ferreiro, J., Surupaneni, A., De Figueiredo, C. C., Sharma, A., Megharaj, M., & Shah, K. (2020). A critical literature review on biosolids to biochar: an alternative biosolids management option. Rev Environ Sci Biotechnol, 19(4), 807-841. https://doi.org/10.1007/s11157-020-09553-x DOI: https://doi.org/10.1007/s11157-020-09553-x
Patoine, A., Manuel, M. F., Haeari, J. A., & Guiot, S. R. (1997). Toxicity reduction and removal of dehydroabietic and abietic acids in a continuous anaerobic reactor. Water Research, 31(4), 825-831. https://doi.org/10.1016/S0043-1354(96)00307-7 DOI: https://doi.org/10.1016/S0043-1354(96)00307-7
Paździor, K., Klepacz-Smólka, A., Wrebiak, J., Liwarska-Bizukojć, E., & Ledakowicz, S. (2016). Biodegradability of industrial textile wastewater – batch tests. Water Science and Technology, 74(5), 1079–1087. https://doi.org/10.2166/wst.2016.288 DOI: https://doi.org/10.2166/wst.2016.288
Pitás, V., Somogyi, V., Kárpáti, Á., Thury, P., & Fráter, T. (2020). Reduction of chemical oxygen demand in a conventional activated sludge system treating coke oven wastewater. Journal of Cleaner Production, 273, 122482. https://doi.org/10.1016/j.jclepro.2020.122482 DOI: https://doi.org/10.1016/j.jclepro.2020.122482
Popple, T., Williams, J. B., May, E., Mills, G. A., & Oliver, R. (2016). Evaluation of a sequencing batch reactor sewage treatment rig for investigating the fate of radioactively labelled pharmaceuticals: case study of propranolol. Water Res., 88, 83–92. https://doi.org/10.1016/j.watres.2015.09.033 DOI: https://doi.org/10.1016/j.watres.2015.09.033
Qu, X., Gao, W. J., Han, M. N., Chen, A., & Liao, B. Q. (2012). Integrated thermophilic submerged aerobic membrane bioreactor and electrochemical oxidation for pulp and paper effluent treatment – towards system closure. Bioresource Technology, 116, 1–8. https://doi.org/10.1016/j.biortech.2012.04.045 DOI: https://doi.org/10.1016/j.biortech.2012.04.045
Rahman, T. U., Roy, H., Islam, Md. R., Tahmid, M., Fariha, A., Mazumder, A., Tasnim, N., Pervez, Md. N., Cai, Y., Naddeo, V., & Islam, Md. S. (2023). The advancement in membrane bioreactor (MBR) technology toward sustainable industrial wastewater management. MembraneIs, 13(2), 181. https://doi.org/10.3390/membranes13020181 DOI: https://doi.org/10.3390/membranes13020181
Ramaswami, S., Behrendt, J., Gulyas, H., & Otterpohl, R. (2016). Pretreatment of Wastewater from Licorice Processing. A Preliminary Evaluation. Water Environment Research, 88(11), 2032–2039. https://www.jstor.org/stable/26662014 DOI: https://doi.org/10.2175/106143016X14733681695249
Ren, H., Geng, J., Huo, H., Xu. K., Huaang, H., Hu. H., & Ren, H. (2018). Bioaugmentated activated sludge degradation of progesterone: kinetics and mechanism. Chem. Eng. J., 352, 214-224. https://doi.org/10.1016/j.cej.2018.06.159 DOI: https://doi.org/10.1016/j.cej.2018.06.159
Revilla, M., Galán, B., & Viguri, J. R. (2016). Analysis and modelling of predation on biofilm activated sludge process: Influence on microbial distribution, sludge production and nutrient dosage. Bioresource Technology, 220, 572–583. https://doi.org/10.1016/j.biortech.2016.08.107 DOI: https://doi.org/10.1016/j.biortech.2016.08.107
Rodríguez-Rodríguez, C. E., Jelić, A. Pereira, M. A., Sousa, D. Z., Petrović, M., Alves, M. M., Barceló, D., Caminal, G., & Vicent, T. (2012). Bioaugmentation of sewage sludge with Trametes versicolor in solid-phase biopiles produces degradation of pharmaceuticals and affects microbial communities. Environ Sci Technol., 46(21), 12012–12020. https://doi.org/10.1021/es301788n DOI: https://doi.org/10.1021/es301788n
Rosenberger, S., Krüger, U., Witzig, R., Manz, W., Szewzyk, U., & Kraume, M. (2002). Performance of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater. Water Res., 36(2), 413-420. https://doi.org/10.1016/S0043-1354(01)00223-8 DOI: https://doi.org/10.1016/S0043-1354(01)00223-8
Saleem, M., Spagni, A., Alibardi, L., Bertucco, A., & Lavagnolo, M. C. (2018). Assessment of dynamic membrane filtration for biological treatment of old landfill leachate. J. Environ Manag., 213, 27–35. https://doi.org/10.1016/j.jenvman.2018.02.057 DOI: https://doi.org/10.1016/j.jenvman.2018.02.057
Sanchis, S., Polo, A.M., Tobajas, M., Rodriguez, J. J., & Mohedano, A. F. (2014). Strategies to evaluate biodegradability: Application to chlorinated herbicides. Environ Sci. Pollut. Res., 21, 9445–9452. https://doi.org/10.1007/s11356-013-2130-y DOI: https://doi.org/10.1007/s11356-013-2130-y
Sant’anna, G. L. Jr. (2010). Biological treatment of effluents: fundamentals and applications. Interciência.
Santos, E. M. A., Sampaio, G. M. M. S., Leitão, R. C., Facó, A. M., Menezes, E. A., & Santaella, S. T. (2006). Influência do tempo de detenção hidráulica em um sistema UASB seguido de um reator biológico com fungos para tratar efluentes de indústria de castanha de caju. Revista Engenharia Sanitária e Ambiental, 11(1), 39-45. https://doi.org/10.1590/S1413-41522006000100006 DOI: https://doi.org/10.1590/S1413-41522006000100006
Sawadogo, B., Konaté, Y., Lesage, G., Zaviska, F., Mannot, M., Heran, M., & Karambiri, H. (2018). Brewery wastewater treatment using MBR coupled with nanofiltration or electrodialysis: biomass acclimation and treatment efficiency. Water Science and Technology, 77(11), 2624–2634. https://doi.org/10.2166/wst.2018.232 DOI: https://doi.org/10.2166/wst.2018.232
Seo, G. T., Ahan, H. I., Kim, J. T., Lee, Y. J., & Kim, I. S. (2004). Domestic wastewater reclamation by submerged membrane bioreactor with high concentration powdered activated carbon for stream restoration. Water Science and Technology, 50(2), 173–178. https://pubmed.ncbi.nlm.nih.gov/15344788/ DOI: https://doi.org/10.2166/wst.2004.0117
Singleton, J. (1994). Microbial metabolism of xenobiotics: Fundamental and applied research. J. Chem Technol. Biotechnol., 59(1), 9-23. https://doi.org/10.1002/jctb.280590104 DOI: https://doi.org/10.1002/jctb.280590104
Snyder, S. A., Adham, S., Redding, A. M., Cannon, F. S., DeCarolis, J., Oppenheimer, J., Wert, E. C., & Yoon, Y. (2007). Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination, 202(1-3),156-181. https://doi.org/10.1016/j.desal.2005.12.052 DOI: https://doi.org/10.1016/j.desal.2005.12.052
Solís, R. R., Rivas, F. J., Ferreira, L. C., Pirra, A., & Peres, J. A. (2018). Integrated aerobic biological–chemical treatment of winery wastewater diluted with urban wastewater. LED-based photocatalysis in the presence of monoperoxysulfate. Journal of Environmental Science and Health, 53(2), 124–131. https://doi.org/10.1080/10934529.2017.1377584 DOI: https://doi.org/10.1080/10934529.2017.1377584
Sun, X., & Zhang, J. (2010). Qian yi gao xiao xue shu lun wen jiang li xian zhuang. Science and Technology Innovation Herald, 2010(35), 227-229.
Tan, T. W., Ng, H. Y., & Ong, S. L. (2008). Effect of mean cell residence time on the performance and microbial diversity of pre-denitrification submerged membrane bioreactors. Chemosphere, 70(3), 387-396. https://doi.org/10.1016/j.chemosphere.2007.07.003 DOI: https://doi.org/10.1016/j.chemosphere.2007.07.003
Tchobanoglous, G., Darby, J., Bourgeous, K., McArdle, J., Genest, P., & Tylla, M. (1998). Ultrafiltration as an advanced tertiary treatment process for municipal wastewater. Desalination, 119(1-3), 315-321. https://doi.org/10.1016/S0011-9164(98)00175-1 DOI: https://doi.org/10.1016/S0011-9164(98)00175-1
Ubay Çokgör, E., Sözen, S., Orhon, D., & Henze, M. (1998). Respirometric analysis of activated sludge behaviour-I: assessment of the readily biodegradable substrate. Water Research, 32(2), 461-475. https://doi.org/10.1016/S0043-1354(97)00209-1 DOI: https://doi.org/10.1016/S0043-1354(97)00209-1
Ugwuanyi, E. D., Nwokediegwu, Z. Q. S., Dada, M. A., Majemite, M. T., & Obaigbena, A. (2024). Review of emerging technologies for nutrient removal in wastewater treatment. World Journal of Advanced Research and Reviews, 21(02), 1737–1749. http://dx.doi.org/10.30574/wjarr.2024.21.2.0520 DOI: https://doi.org/10.30574/wjarr.2024.21.2.0520
United Nations. (2015, Oct. 21). Transforming Our World: The 2030 Agenda for Sustainable Development. https://sdgs.un.org/2030agenda
Van Haandel, A. C., & Van Der Lubbe, J. G. M. (2012). Handbook of Biological Wastewater Treatment: Design and Optimisation of Activated Sludge Systems (2nd ed.). IWA Publishing. DOI: https://doi.org/10.2166/9781780400808
Vergine, P., Salerno, C., Berardi, G., Pappagallo, G., & Pollice, A. (2020). The Self-Forming Dynamic Membrane BioReactor (SFD MBR) as a suitable technology for agro-industrial wastewater treatment. New Biotechnology, 56, 87–95. https://doi.org/10.1016/j.nbt.2019.12.005 DOI: https://doi.org/10.1016/j.nbt.2019.12.005
Villaverde, S., García Encina, M. L., & Fernández-Polanco, F. (2000). New operational strategy for SBR technology for total nitrogen removal from industrial wastewaters highly loaded with nitrogen. Water Science and Technology, 41(12), 85-93. https://doi.org/10.2166/wst.2000.0246 DOI: https://doi.org/10.2166/wst.2000.0246
Von Sperling, M. (2014). Introdução à qualidade das águas e ao tratamento de esgotos (4th ed). UFMG.
Von Sperling, M. (2012). Princípios do tratamento biológico de águas residuárias: lodos ativados (3rd ed). UFMG.
Shi, J., Huang, W., Han, H., & Xu, C. (2021) Pollution control of wastewater from the coal chemical industry in China: Environmental management policy and technical standards. Renewable and Sustainable Energy Reviews, 143, 110883. https://doi.org/10.1016/j.rser.2021.110883 DOI: https://doi.org/10.1016/j.rser.2021.110883
Wake, H. (2005). Oil refineries: a review of their ecological impacts on the aquatic environment. Estuar Coast Shelf Sci., 62(1), 131–140. https://doi.org/10.1016/j.ecss.2004.08.013 DOI: https://doi.org/10.1016/j.ecss.2004.08.013
Wang, D., Hu, Q-Y., Wang, C., & Ji, M. (2016). Evaluating the removal of organic fraction of commingled chemical industrial wastewater by activated sludge process augmented with powdered activated carbon. Arabian Journal of Chemistry, 9(2), S1951–S1961. https://doi.org/10.1016/j.arabjc.2015.08.031 DOI: https://doi.org/10.1016/j.arabjc.2015.08.031
Wang, L. (2016). Gao xiao zai guo jia ke ji jiang li zhi du zhong huo jiang xian xiang ji qi ying xiang yin su de yan jiu: yi jiao yu bu zhi shu gao xiao wei shu ju cai ji dui xiang. [Master of Arts]. East China Normal University.
Wang, X., Chang, V. W. C., & Tang, C. Y. (2016). Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation: advances, challenges, and prospects for the future. J. Membr. Sci., 504, 113-132. https://doi.org/10.1016/j.memsci.2016.01.010 DOI: https://doi.org/10.1016/j.memsci.2016.01.010
Yáñez-Hernández, O., Ríos-Lira, A. J., Pantoja-Pacheco, Y. V., Ruelas-Santonyo, E. A., Asato-España, M. L., & Valdovinos-García, E. M. (2024). Characterization of Wastewater in an Activated Sludge Treatment Plant of the Food Sector. Water, 16(18), 2647. https://doi.org/10.3390/w16182647 DOI: https://doi.org/10.3390/w16182647
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Ciência e Natura

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Para acessar a DECLARAÇÃO DE ORIGINALIDADE E EXCLUSIVIDADE E CESSÃO DE DIREITOS AUTORAIS clique aqui.
Diretrizes Éticas para Publicação de Revistas
A revista Ciência e Natura está empenhada em garantir a ética na publicação e na qualidade dos artigos.
A conformidade com padrões de comportamento ético é, portanto, esperada de todas as partes envolvidas: Autores, Editores e Revisores.
Em particular,
Autores: Os Autores devem apresentar uma discussão objetiva sobre a importância do trabalho de pesquisa, bem como detalhes e referências suficientes para permitir que outros reproduzam as experiências. Declarações fraudulentas ou intencionalmente incorretas constituem comportamento antiético e são inaceitáveis. Artigos de Revisão também devem ser objetivos, abrangentes e relatos precisos do estado da arte. Os Autores devem assegurar que seu trabalho é uma obra totalmente original, e se o trabalho e / ou palavras de outros têm sido utilizadas, isso tem sido devidamente reconhecido. O plágio em todas as suas formas constitui um comportamento publicitário não ético e é inaceitável. Submeter o mesmo manuscrito a mais de um jornal simultaneamente constitui um comportamento publicitário não ético e é inaceitável. Os Autores não devem submeter artigos que descrevam essencialmente a mesma pesquisa a mais de uma revista. O Autor correspondente deve garantir que haja um consenso total de todos os Co-autores na aprovação da versão final do artigo e sua submissão para publicação.
Editores: Os Editores devem avaliar manuscritos exclusivamente com base no seu mérito acadêmico. Um Editor não deve usar informações não publicadas na própria pesquisa do Editor sem o consentimento expresso por escrito do Autor. Os Editores devem tomar medidas de resposta razoável quando tiverem sido apresentadas queixas éticas relativas a um manuscrito submetido ou publicado.
Revisores: Todos os manuscritos recebidos para revisão devem ser tratados como documentos confidenciais. As informações ou ideias privilegiadas obtidas através da análise por pares devem ser mantidas confidenciais e não utilizadas para vantagens pessoais. As revisões devem ser conduzidas objetivamente e as observações devem ser formuladas claramente com argumentos de apoio, de modo que os Autores possam usá-los para melhorar o artigo. Qualquer Revisor selecionado que se sinta desqualificado para rever a pesquisa relatada em um manuscrito ou sabe que sua rápida revisão será impossível deve notificar o Editor e desculpar-se do processo de revisão. Os Revisores não devem considerar manuscritos nos quais tenham conflitos de interesse resultantes de relacionamentos ou conexões competitivas, colaborativas ou outras conexões com qualquer dos autores, empresas ou instituições conectadas aos documentos.

