Plataforma petroquímica sustentável de Capim Elefante

Autores

DOI:

https://doi.org/10.5902/2179460X86488

Palavras-chave:

Pirólise, Bio-óleo, Biochar, Etanol, Capim-elefante

Resumo

O objetivo desta pesquisa é demonstrar o potencial do capim-elefante (Pennisetum purpureum Schum) como biomassa para a obtenção de outros subprodutos de valor agregado, como biocombustíveis, etanol lignocelulósico, adsorventes, entre outros. Através do processo de pirólise, foram produzidos biochar e bio-óleo com rendimentos médios de 24,45% e 4,92%, respectivamente Os principais componentes encontrados no bio-óleo foram os ácidos carboxílicos (64,47%), seguidos dos ésteres (19,74%). A porcentagem de adsorção de carboidratos observada no biochar foi menor do que a encontrada no carvão ativado comercial, o que é desejável na indústria alimentícia. Por meio de microscopia eletrônica de varredura (MEV), foi possível observar que o biochar consiste em partículas não uniformes com numerosos poros, sugerindo seu potencial uso como material adsorvente. Os valores de área superficial (BET e LANGMUIR) não produziram resultados significativos; no entanto, houve um aumento no tamanho dos poros após o processo de pirólise. O teor de glicose encontrado neste estudo foi de 70,33% e o teor de açúcares redutores foi de 14,24 g.L-1. Com base nos cálculos teóricos de rendimento para o etanol 2G, é possível inferir uma produção potencial de 0,88 toneladas de etanol 2G por hectare de capim-elefante plantado por ano. O rendimento teórico calculado para o ácido levulínico (AL) foi de 35,16% e para o ácido fórmico (FA) foi de 14,07%. Vale ressaltar que o uso de tais resíduos para a produção de biochar e bio-óleo representa uma alternativa promissora e econômica, já que o capim-elefante é atualmente destacado entre as culturas mais exploradas para fins energéticos.

Downloads

Não há dados estatísticos.

Biografia do Autor

Regiani Crystina Barbazelli, Universidade Federal do Tocantins

Matemática, Mestrado em Engenharia Elétrica

Magale Karine Diel Rambo, Universidade Federal do Tocantins

Doutora em Química

Michele Cristiane Diel Rambo, Instituto Federal de Educação, Ciência e Tecnologia do Tocantins

Doutora em Educação Matemática

Marysa de Kássia Guedes Soares Vital, Universidade Federal do Tocantins

Engenheiro Químico, Mestrado em Biotecnologia

Tayanna Fonseca Pimentel, Universidade Federal do Tocantins

Engenheira de Alimentos, Mestranda em Biodiversidade, Ecologia e Conservação

Guilherme Rocha dos Santos, Universidade Federal do Tocantins

Engenheiro Agrônomo, Mestrado em Biodiversidade, Ecologia e Conservação

Patrícia Martins Guarda, Universidade Federal do Tocantins

Doutora em Biodiversidade e Biotecnologia

Vanilcia Clementina de Oliveira Marto, Universidade Federal do Tocantins

Bióloga, Mestre em Biodiversidade, Ecologia e Conservação

Referências

Adeniyi, A. G., Ighalo, J. O., Iwuozor, K. O., & Amoloye, M. A. (2022). A study on the thermochemical co-conversion of poultry litter and elephant grass to biochar. Clean Technologies and Environmental Policy, 24, 2193–2202. DOI: https://doi.org/10.1007/s10098-022-02311-3

Adesemuyi, M. F., Adebayo, M. A., Akinola, A. O., Olasehinde, E. F.; Adewole, K. A., & Laj, L. (2020). Preparation and characterisation of biochars from elephant grass and their utilisation for aqueous nitrate removal: Effect of pyrolysis temperature. Journal of Environmental Chemical Engineering, 8. DOI: https://doi.org/10.1016/j.jece.2020.104507

Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., & Usman, A. R. A. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology, 131, 374–379. DOI: https://doi.org/10.1016/j.biortech.2012.12.165

Almeida, G. F. L. (2019). Second-Generation Alcohol Using Biomass Sorghum (Sorghum Bicolor). (Thesis Of Doctorate). Graduate

Program In Biofuels, Federal University Of The Jequitinhonha And Mucuri Valleys, Diamantina, Mg, Brasil. Available At: Http://Acervo.ufvjm.edu.br/Jspui/Handle/1/2066. American Society For Testing And Materials. (2017). ASTM D3173-17: Standard Test Method For Moisture In The Analysis Sample Of Coal And Coke. West Conshohocken: Astm.

American Society For Testing And Materials. (2018). ASTM D3174-12: Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal. West Conshohocken: ASTM.

American Society For Testing And Materials. (2020). ASTM D3175-20: Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke. West Conshohocken: ASTM.

Antonangelo J. A., Zhang H., Sun X., & Kumar A. (2019). Physicochemical properties and morphology of biochars as affected by feedstock sources and pyrolysis temperatures. Biochar., 1, 325–336. DOI: https://doi.org/10.1007/s42773-019-00028-z

Association Of Official Analytical Chemists. (1995). A.O.A.C. 1975: Methods of analysis of the Association of official Analytical Chemists. Washington: A.O.A.C.

Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M. H. A., & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: a review. Journal Food Engineering, 117, 426-436. DOI: https://doi.org/10.1016/j.jfoodeng.2013.01.014

Badgujar, K. C., Wilson, L. D., & Bhanage, B. M. (2019). Recent advances for sustainable pro- duction of levulinic acid in ionic liquids from biomass: Current scenario, opportunities and challenges. Renewable and Sustainable Energy Reviews, 102, 266–284. DOI: https://doi.org/10.1016/j.rser.2018.12.007

Bergmeyer, H.u. (Ed.). (1985). Methods of Enzymatic Analysis. (2a. ed.). New York: Academic Press.

Bordoloi, N.,Narzari, R.; Chutia, R. S., Bhaskar, T., & Kataki, R. (2015). Pyrolysis of Mesua ferrea and Pongamia glabra seed cover: characterization of bio-oil and its sub-fractions. Bioresource Technology, 178, 83–89. DOI: https://doi.org/10.1016/j.biortech.2014.10.079

Brosse, N., Dufour A., Meng X., Sun Q., & Ragauskas, A. (2012). Miscanthus: a fast-growning crop for biofuels and chemicals production. Biofuels, Bioproducts and Biorefining, v. 6, 580-598. DOI: https://doi.org/10.1002/bbb.1353

Chen, Y., Yang, H., Wang, X., Zhang, S., & Chen, H. (2012). Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: influence of temperature. Bioresource Technology, 107, 411–418. DOI: https://doi.org/10.1016/j.biortech.2011.10.074

Dantas, G. A., Legey, L. F. L., & Mazzone, A. (2013). Energy from sugarcane bagasse in Brazil: An assessment of the productivity and cost of different technological routes. Renewable & Sustainable Energy Reviews, 21. DOI: https://doi.org/10.1016/j.rser.2012.11.080

Essig, M., Lowary, G. N., Richards, E., & Schenck, E. (1988). Research in thermo chemical biomass conversion. Elsevier Applied Science.

Ferreira, S. D., Manera, C., Silvestre, W. P., Pauletti G. F., Altafini C. R., & Godinho, M. (2019). Use of biochar produced from elephant grass by pyrolysis in a screw reactor as a soil amendment. Waste and Biomass Valorization, 10, 3089–3100. DOI: https://doi.org/10.1007/s12649-018-0347-1

Fontoura, C. F., Brandão, L. E., & Gomes, L. L. (2015). Elephant grass biorefineries: towards a cleaner Brazilian energy matrix? Journal of Cleaner Production, 96. DOI: https://doi.org/10.1016/j.jclepro.2014.02.062

Freitas, M., Pianaro, S. A., Nadal, F. N., Tebcherani, S. M., & Berg, E. A. T. (2009). Preparação e caracterização de materiais compósitos SiC/caulim/Al via “squeeze-casting”. Cerâmica, 55, 271–280. DOI: https://doi.org/10.1590/S0366-69132009000300006

Jendoubi, N., Broust, F., Commandre, J. M., Mauviel, G., Sardin, M., & Lede, J. (2011). Inorganics distribution in biooils and char produced by biomass fast pyrolysis: the key role of aerosols. Journal of Analytical and Applied Pyrolysis, 92, 59–67. DOI: https://doi.org/10.1016/j.jaap.2011.04.007

Kamarullah, S. H., Mydin, M. M., Omar, W. S. A. W., Harith, S. S., Noor, B. H. M., Alias, N. Z. A., Manap, S. & Mohamad, R. (2015). Surface Morphology and chemical composition of Napier grass fibers. Malaysian Journal Analytical Sciences,19, 889–895.

Kumar, S., Ahluwalia, V., Kundu, P., Sangwan, R. S., Kansal, S. K., Runge, T. M., & Elumalai, S. (2018). Improved levulinic acid production from agri-residue biomass in biphasic solvent system through synergistic catalytic effect of acid and products. Bioresource Technology, 251, 143–150. DOI: https://doi.org/10.1016/j.biortech.2017.12.033

Lewoyehu, M. (2021). Comprehensive review on synthesis and application of activated carbon from agricultural residues for the remediation of venomous pollutants in wastewater. Journal of Analytical and Applied Pyrolysis, 159. DOI: https://doi.org/10.1016/j.jaap.2021.105279

Li, S. & Chen, G. (2018). Thermogravimetric, thermochemical, and infrared spectral characterization of feedstocks and biochar derived at different pyrolysis temperatures. Waste Management, 78, 198-207. DOI: https://doi.org/10.1016/j.wasman.2018.05.048

Ma, Z., Yang, Y., Ma, Q., Zhou, H., Luo, X., Liu, X., & Wang, S. (2017). Evolution of the chemical composition, functional group, pore structure and crystallographic structure of biochar from palm kernel shell pyrolysis under different temperatures. Journal of Analytical and Applied Pyrolysis, 127, 350–359. DOI: https://doi.org/10.1016/j.jaap.2017.07.015

Ma, Z., Yang, Y., Wu, Y., Xu, J., Peng, H., Liu, X., Zhang, W., & Wang, S. (2019). In-depth com- parison of the physicochemical characteristics of bio-char derived from biomass pseudo components: hemicellulose, cellulose, and lignin. Journal of Analytical and Applied Pyrolysis, 140, 195–204. DOI: https://doi.org/10.1016/j.jaap.2019.03.015

Mangwandi, C., Kurniawan, T. A., & Albadarin, A. B. (2020). Comparative biosorption of chromium (VI) using chemically modified date pits (CM-DP) and olive stone (CM-OS): Kinetics, isotherms and influence of co-existing ions. Chemical Engineering Research and Design, 156, 251–262. DOI: https://doi.org/10.1016/j.cherd.2020.01.034

Manna, S., Roy, D., Saha, P., & Adhikari. B. (2015). Defluoridation of aqueous solution using alkali–steam treated water hyacinth and elephant grass. Journal of the Taiwan Institute of Chemical Engineers, 50, 215-222. DOI: https://doi.org/10.1016/j.jtice.2014.12.003

Marafon, A.C., Amaral, A.F.C, Machado, J.C., Carneiro, J.D.C., Bierhals, A.N., & Guimarães, V.D.S. (2021). Chemical composition and calorific value of elephant grass varieties and other feedstocks intended for direct combustion. Grassl Sci. 2021, 67, 241–249. doi: https://doi.org/10.1111/grs.12311 DOI: https://doi.org/10.1111/grs.12311

Marasca, N., Cardoso, I., Rambo, M., Bertuol, D., Rambo, M., Guarda, E., & Scapin, E. (2022). Ultrasound Assisted Pretreatments Applied to Cupuaçu Husk (Theobroma grandiflorum) from Brazilian Legal Amazon for Biorefinery Concept. Journal of the brazilian chemical society, 23, 906-915. DOI: https://doi.org/10.21577/0103-5053.20220005

Martin, C. A., Almeida, V. V., Ruiz, R., Visentainer, J. E. L., Matshushita, M., Souza, N. E., & Visentainer, J. V. (2006). Ácidos graxos poliinsaturados ômega-3 e ômega-6: importância e ocorrência em alimentos. Revista de nutrição, 19, 761-770. DOI: https://doi.org/10.1590/S1415-52732006000600011

Martins, L. O. S. & Andrade, D. A. S. (2021). Theoretical estimation of the potential for generating electricity from sugarcane, elephant grass and coconut from Bahia in Brazil. Textura, 14, 38-58. DOI: https://doi.org/10.22479/texturav14n2p38-58

Marzeddu, S., Cappelli, A., Ambrosio, A., Décima, M. A., Viotti, P., & Boni, M. R. (2021). A Life Cycle Assessment of an Energy-Biochar Chain Involving a Gasification Plant in Italy. Land, 10, 2-29. DOI: https://doi.org/10.3390/land10111256

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, Washington, 31(3), 426-428. DOI: https://doi.org/10.1021/ac60147a030

Mohammed, I. Y., Abakr, Y. A., Kazi, F. K., Yusup, S., Alshareef, I., & Chin S. A. (2015). Comprehensive characterization of Napier grass as a feedstock for thermochemical conversion. Energies, 8, 3403–3417. DOI: https://doi.org/10.3390/en8053403

Montero, J. I. Z., Monteiro, A. S. C., Gontijo, E. S. J., Bueno, C. C., Moraes, M. A. de, & Rosa, A. H. (2013). High efficiency removal of As (III) from waters using a new and friendly adsorbent based on sugarcane bagasse and corncob husk Fecoated biochars. Ecotoxicology Environ mental Safety, 162, 616–624. DOI: https://doi.org/10.1016/j.ecoenv.2018.07.042

Muniz, A. R. C., Berdet, G., & Silva, L. da. (2015). Potentiality Of Elephant Grass For The Production Of Second-Generation Ethanol. Anais Brazilian Congress of Chemical Engineering in Scientific Initiation. Campinas, SP, Brasil, 11. doi: 10.5151/chemeng-cobeqic2015-056-32017-263954. DOI: https://doi.org/10.5151/chemeng-cobeqic2015-056-32017-263954

Nizamuddin, S. et al. (2016). Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell. Fuel, 163, 88-97. DOI: https://doi.org/10.1016/j.fuel.2015.08.057

National Renewable Energy Laboratory. (2011). NREL/TP-510-42619: Determination of extractives in biomass. Golden: NREL.

Ortega-Santiago, M. A., Honorato-Salazar, J. A., Quero-Carrillo, A. R., Hernández-Garay, A., López Castañeda, C., & López-Guerrero, I. (2016). Biomassa de Urocholoa brizantha cv. Toledo com materia prima para la produccíon de bioetanol. Agrociência, 50 (6).

Pedroza, M. M. (2017). Energy use of urban solid waste in pyrolysis processes. Brazilian Journal of Renewable Energies, 6,184-207.

Pereira, A. V. et al. (2021). BRS Capiaçu and BRS Kurumi: Cultivation and Use. Brasília: Embrapa.

Pereira, D. G. S. (2013). Yields of enzymatic hydrolysis and alcoholic fermentantion of gamba grass, guinea grass, elephant grass and sugarcane bagasse for second generation ethanol production. (Master‘s Thesis) . Universidade Federal de Viçosa, Viçosa, MG, Brasil.

Peterlini, E. M., Arantes, M. D. C., Gonçalves, G. P. V., Vidaurre, G. P., Bauer, M. O., & Moulin, J. C. (2013). Evaluation of elephant grass for energy use. Journal of biotechnology and biodiversity, 4, 119-125. DOI: https://doi.org/10.20873/jbb.uft.cemaf.v4n2.paterlini

Rambo M. K. D., Schmidt F. L., & Ferreira, M. M. C. (2015). Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities. Talanta, 144, 696–703. DOI: https://doi.org/10.1016/j.talanta.2015.06.045

Rajeswari, G., Murugan, M., & Mohan, V. R. (2012). GC-MS analysis of bioactive components of Hugonia mystax L. (Linaceae). Research Journal of Pharmaceutical, Biological and Chemical Sciences, 3, 301-308.

Reddy, K. O., Maheswari, C. U., Dhlamini, M. S., Mothud,I B. M., Kommula, V. P., Zhang, J., & Rajulu, A. V. (2018). Extraction and characterization of cellulose single fibers from native African Napier grass. Carbohydrate Polymers, 188, 85–91. DOI: https://doi.org/10.1016/j.carbpol.2018.01.110

Reza, M. S., Islam, S. N., Afroze, S., Bakar, M. S. A., Sukri, R. S., Rahman, S., & Azad, A. K. (2020). Evaluation of the bio- energy potential of invasive Pennisetum purpureum through pyrolysis and thermogravimetric analysis. Energy, Ecology and Environment, 5, 118-133. DOI: https://doi.org/10.1007/s40974-019-00139-0

Rouquerol, J., Avnir, D., Fairbridge, C. W., Everett, D. H., Haynes, J. H., Pernicone, N., Ramsay, J. D. F., Unger, K. K. (1994). Recommendation for the characterization of porous solids. Pure and Applied Chemistry, 66, 1739-1758. DOI: https://doi.org/10.1351/pac199466081739

Samson, R., Mani, S., Boddey, R., Sokhansanj, S., Quesada, D., Urquiaga, S., Reis, V., & Holem, C. (2005). The potential of C4 perennial grasses for developing a global BIOHEAT industry. Critical Reviews in Plant Sciences, 24, 461-495. DOI: https://doi.org/10.1080/07352680500316508

Santos, F. A., Queiróz, J. H., Colodette, J. L., Fernandes, S. A., Guimarães, V. M., & Rezende, S. T. (2012). Potential of sugarcane straw for alcohol production. Química Nova, 35(5), 1004-1010. DOI: https://doi.org/10.1590/S0100-40422012000500025

Scopel, E., Santos, L. C., Bofinger, M. R., Martínez, J., & Rezende, C. A. (2020). Green extractions to obtain value-added elephant grass co-products in an ethanol biorefinery. Journal of Cleaner Production, 274. DOI: https://doi.org/10.1016/j.jclepro.2020.122769

Sharma, R. K., Wooten, J. B., Baliga, V. L., & Hajaligol, M. L. (2001). Characterization of chars from biomass-derived materials: pectin chars. Fuel, v. 80, 1825-1836. DOI: https://doi.org/10.1016/S0016-2361(01)00066-7

Silva, D. A., Alesi, L. S., Da Róz, A. L., Santos, L. R. O., & Quadros, T. M. C. (2018). Effect of Granulometry on Elephant Grass Biomass Compaction. Virtual Chemistry Journal, 10(2), 323-333.

Silveira Junior, E. G., Silveira, T. C., Perez, V. H., Justo, O. R., David, G. F., & Fernandes, S. A. (2022). Fast pyrolysis of elephant grass: Intensification of levoglucosan yield and other value-added pyrolytic by-products. Journal of the Energy Institute, 101, 254-264. DOI: https://doi.org/10.1016/j.joei.2022.02.003

Strezov, V., Evans, T. J., & Hayman, C. (2008). Thermal conversion of elephant grass (Pennisetum Purpureum Schum) to bio-gas, bio-oil and charcoal. Bioresource Technology, 99, 8394-8399. DOI: https://doi.org/10.1016/j.biortech.2008.02.039

Świątek, K., Gaag, S., Klier, A., Kruse, A., Sauer, J., & Steinbach, D. (2020). Acid Hydrolysis of Lignocellulosic Biomass: Sugars and Furfurals Formation. Catalysts, 10. DOI: https://doi.org/10.3390/catal10040437

Timung, R., Mohan, M., Chilukoti, B., Sasmal, S., Banerjee, T., & Goud, V. V. (2015). Optimization of dilute acid and hot water pretreatment of different lignocellulosic biomass: A comparative study. Biomass and Bioenergy, 81. DOI: https://doi.org/10.1016/j.biombioe.2015.05.006

Trevisan, H. & Rezende, C. A. (2020). Pure, stable and highly antioxidant lignin nanoparticles from elephant grass. Industrial Crops and Products, v. 145. DOI: https://doi.org/10.1016/j.indcrop.2020.112105

Vale, A. T, Mendes, R. M., Amorim, M. R. S., & Dantas, V. F. S. (2011). Energy Potential of Biomass and Charcoal of Epicarp and Jatropha Cake (Jatropha curcas). Cerne, 17, 267-273. DOI: https://doi.org/10.1590/S0104-77602011000200015

Venturini Filho, W. G. (2016). Non-alcoholic beverages: science and technology. São Paulo: Blucher.

Zeng, T., Weller, N., Pollex, A., & Lenz, V. (2016). Blended biomass pellets as fuel for small scale combustion appliances: Influence on gaseous and total particulate matter emissions and applicability of fuel indices. Fuel, 184, 689– 700. https://doi.org/10.1016/j.fuel.2016.07.04. DOI: https://doi.org/10.1016/j.fuel.2016.07.047

Zhang, Y., Ma, Z., Zhang, Q., Wang, J., Ma, Q., Yang, Y., Luo, X., & Zhang, W. (2017). Comparison of the physicochemical characteristics of biochar pyrolyzed from moso bamboo and rice husk with different pyrolysis temperatures. BioResources, 12, 4652–4669. DOI: https://doi.org/10.15376/biores.12.3.4652-4669

Publicado

2025-03-14

Como Citar

Barbazelli, R. C., Rambo, M. K. D., Rambo, M. C. D., Vital, M. de K. G. S., Pimentel, T. F., Santos, G. R. dos, Guarda, P. M., & Marto, V. C. de O. (2025). Plataforma petroquímica sustentável de Capim Elefante. Ciência E Natura, 47, e86488. https://doi.org/10.5902/2179460X86488

Edição

Seção

Química

Artigos mais lidos pelo mesmo(s) autor(es)