Sustainable petrochemical plataform from Elephant Grass
DOI:
https://doi.org/10.5902/2179460X86488Keywords:
Pyrolysis, Bio-oil, Biochar, Ethanol, Elephant grassAbstract
The objective of this research is to demonstrate the potential of elephant grass (Pennisetum purpureum Schum) as biomass for obtaining other value-added byproducts, such as biofuels, lignocellulosic ethanol, adsorbents, among others. Through the pyrolysis process, biochar and bio-oil with average yields of 24.45% and 4.92% were produced, respectively The main components found in the bio-oil were carboxylic acids (64.47%), followed by esters (19.74%). The carbohydrate adsorption percentage observed in the biochar was lower than that found in commercial activated carbon, which is desirable in the food industry. Through scanning electron microscopy (SEM), it was possible to observe that the biochar consists of non-uniform particles with numerous pores, suggesting its potential use as an adsorbent material. The (BET and LANGMUIR) surface area values did not yield significant results; however, there was an increase in pore size after the pyrolysis process. The glucose content found in this study was 70.33%, and the reducing sugar content was 14.24 g.L-1. Based on the theoretical yield calculations for 2G ethanol, it is possible to infer a potential production of 0.88 tons of 2G ethanol per hectare of elephant grass planted per year. The calculated theoretical yield for levulinic acid (LA) was 35.16%, and for formic acid (FA), it was 14.07%. It is worth noting that the use of such waste for the production of biochar and bio-oil represents a promising and cost-effective alternative, as elephant grass is currently highlighted among the most exploited crops for energy purposes.
Downloads
References
Adeniyi, A. G., Ighalo, J. O., Iwuozor, K. O., & Amoloye, M. A. (2022). A study on the thermochemical co-conversion of poultry litter and elephant grass to biochar. Clean Technologies and Environmental Policy, 24, 2193–2202. DOI: https://doi.org/10.1007/s10098-022-02311-3
Adesemuyi, M. F., Adebayo, M. A., Akinola, A. O., Olasehinde, E. F.; Adewole, K. A., & Laj, L. (2020). Preparation and characterisation of biochars from elephant grass and their utilisation for aqueous nitrate removal: Effect of pyrolysis temperature. Journal of Environmental Chemical Engineering, 8. DOI: https://doi.org/10.1016/j.jece.2020.104507
Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., & Usman, A. R. A. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology, 131, 374–379. DOI: https://doi.org/10.1016/j.biortech.2012.12.165
Almeida, G. F. L. (2019). Second-Generation Alcohol Using Biomass Sorghum (Sorghum Bicolor). (Thesis Of Doctorate). Graduate
Program In Biofuels, Federal University Of The Jequitinhonha And Mucuri Valleys, Diamantina, Mg, Brasil. Available At: Http://Acervo.ufvjm.edu.br/Jspui/Handle/1/2066. American Society For Testing And Materials. (2017). ASTM D3173-17: Standard Test Method For Moisture In The Analysis Sample Of Coal And Coke. West Conshohocken: Astm.
American Society For Testing And Materials. (2018). ASTM D3174-12: Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal. West Conshohocken: ASTM.
American Society For Testing And Materials. (2020). ASTM D3175-20: Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke. West Conshohocken: ASTM.
Antonangelo J. A., Zhang H., Sun X., & Kumar A. (2019). Physicochemical properties and morphology of biochars as affected by feedstock sources and pyrolysis temperatures. Biochar., 1, 325–336. DOI: https://doi.org/10.1007/s42773-019-00028-z
Association Of Official Analytical Chemists. (1995). A.O.A.C. 1975: Methods of analysis of the Association of official Analytical Chemists. Washington: A.O.A.C.
Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M. H. A., & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: a review. Journal Food Engineering, 117, 426-436. DOI: https://doi.org/10.1016/j.jfoodeng.2013.01.014
Badgujar, K. C., Wilson, L. D., & Bhanage, B. M. (2019). Recent advances for sustainable pro- duction of levulinic acid in ionic liquids from biomass: Current scenario, opportunities and challenges. Renewable and Sustainable Energy Reviews, 102, 266–284. DOI: https://doi.org/10.1016/j.rser.2018.12.007
Bergmeyer, H.u. (Ed.). (1985). Methods of Enzymatic Analysis. (2a. ed.). New York: Academic Press.
Bordoloi, N.,Narzari, R.; Chutia, R. S., Bhaskar, T., & Kataki, R. (2015). Pyrolysis of Mesua ferrea and Pongamia glabra seed cover: characterization of bio-oil and its sub-fractions. Bioresource Technology, 178, 83–89. DOI: https://doi.org/10.1016/j.biortech.2014.10.079
Brosse, N., Dufour A., Meng X., Sun Q., & Ragauskas, A. (2012). Miscanthus: a fast-growning crop for biofuels and chemicals production. Biofuels, Bioproducts and Biorefining, v. 6, 580-598. DOI: https://doi.org/10.1002/bbb.1353
Chen, Y., Yang, H., Wang, X., Zhang, S., & Chen, H. (2012). Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: influence of temperature. Bioresource Technology, 107, 411–418. DOI: https://doi.org/10.1016/j.biortech.2011.10.074
Dantas, G. A., Legey, L. F. L., & Mazzone, A. (2013). Energy from sugarcane bagasse in Brazil: An assessment of the productivity and cost of different technological routes. Renewable & Sustainable Energy Reviews, 21. DOI: https://doi.org/10.1016/j.rser.2012.11.080
Essig, M., Lowary, G. N., Richards, E., & Schenck, E. (1988). Research in thermo chemical biomass conversion. Elsevier Applied Science.
Ferreira, S. D., Manera, C., Silvestre, W. P., Pauletti G. F., Altafini C. R., & Godinho, M. (2019). Use of biochar produced from elephant grass by pyrolysis in a screw reactor as a soil amendment. Waste and Biomass Valorization, 10, 3089–3100. DOI: https://doi.org/10.1007/s12649-018-0347-1
Fontoura, C. F., Brandão, L. E., & Gomes, L. L. (2015). Elephant grass biorefineries: towards a cleaner Brazilian energy matrix? Journal of Cleaner Production, 96. DOI: https://doi.org/10.1016/j.jclepro.2014.02.062
Freitas, M., Pianaro, S. A., Nadal, F. N., Tebcherani, S. M., & Berg, E. A. T. (2009). Preparação e caracterização de materiais compósitos SiC/caulim/Al via “squeeze-casting”. Cerâmica, 55, 271–280. DOI: https://doi.org/10.1590/S0366-69132009000300006
Jendoubi, N., Broust, F., Commandre, J. M., Mauviel, G., Sardin, M., & Lede, J. (2011). Inorganics distribution in biooils and char produced by biomass fast pyrolysis: the key role of aerosols. Journal of Analytical and Applied Pyrolysis, 92, 59–67. DOI: https://doi.org/10.1016/j.jaap.2011.04.007
Kamarullah, S. H., Mydin, M. M., Omar, W. S. A. W., Harith, S. S., Noor, B. H. M., Alias, N. Z. A., Manap, S. & Mohamad, R. (2015). Surface Morphology and chemical composition of Napier grass fibers. Malaysian Journal Analytical Sciences,19, 889–895.
Kumar, S., Ahluwalia, V., Kundu, P., Sangwan, R. S., Kansal, S. K., Runge, T. M., & Elumalai, S. (2018). Improved levulinic acid production from agri-residue biomass in biphasic solvent system through synergistic catalytic effect of acid and products. Bioresource Technology, 251, 143–150. DOI: https://doi.org/10.1016/j.biortech.2017.12.033
Lewoyehu, M. (2021). Comprehensive review on synthesis and application of activated carbon from agricultural residues for the remediation of venomous pollutants in wastewater. Journal of Analytical and Applied Pyrolysis, 159. DOI: https://doi.org/10.1016/j.jaap.2021.105279
Li, S. & Chen, G. (2018). Thermogravimetric, thermochemical, and infrared spectral characterization of feedstocks and biochar derived at different pyrolysis temperatures. Waste Management, 78, 198-207. DOI: https://doi.org/10.1016/j.wasman.2018.05.048
Ma, Z., Yang, Y., Ma, Q., Zhou, H., Luo, X., Liu, X., & Wang, S. (2017). Evolution of the chemical composition, functional group, pore structure and crystallographic structure of biochar from palm kernel shell pyrolysis under different temperatures. Journal of Analytical and Applied Pyrolysis, 127, 350–359. DOI: https://doi.org/10.1016/j.jaap.2017.07.015
Ma, Z., Yang, Y., Wu, Y., Xu, J., Peng, H., Liu, X., Zhang, W., & Wang, S. (2019). In-depth com- parison of the physicochemical characteristics of bio-char derived from biomass pseudo components: hemicellulose, cellulose, and lignin. Journal of Analytical and Applied Pyrolysis, 140, 195–204. DOI: https://doi.org/10.1016/j.jaap.2019.03.015
Mangwandi, C., Kurniawan, T. A., & Albadarin, A. B. (2020). Comparative biosorption of chromium (VI) using chemically modified date pits (CM-DP) and olive stone (CM-OS): Kinetics, isotherms and influence of co-existing ions. Chemical Engineering Research and Design, 156, 251–262. DOI: https://doi.org/10.1016/j.cherd.2020.01.034
Manna, S., Roy, D., Saha, P., & Adhikari. B. (2015). Defluoridation of aqueous solution using alkali–steam treated water hyacinth and elephant grass. Journal of the Taiwan Institute of Chemical Engineers, 50, 215-222. DOI: https://doi.org/10.1016/j.jtice.2014.12.003
Marafon, A.C., Amaral, A.F.C, Machado, J.C., Carneiro, J.D.C., Bierhals, A.N., & Guimarães, V.D.S. (2021). Chemical composition and calorific value of elephant grass varieties and other feedstocks intended for direct combustion. Grassl Sci. 2021, 67, 241–249. doi: https://doi.org/10.1111/grs.12311 DOI: https://doi.org/10.1111/grs.12311
Marasca, N., Cardoso, I., Rambo, M., Bertuol, D., Rambo, M., Guarda, E., & Scapin, E. (2022). Ultrasound Assisted Pretreatments Applied to Cupuaçu Husk (Theobroma grandiflorum) from Brazilian Legal Amazon for Biorefinery Concept. Journal of the brazilian chemical society, 23, 906-915. DOI: https://doi.org/10.21577/0103-5053.20220005
Martin, C. A., Almeida, V. V., Ruiz, R., Visentainer, J. E. L., Matshushita, M., Souza, N. E., & Visentainer, J. V. (2006). Ácidos graxos poliinsaturados ômega-3 e ômega-6: importância e ocorrência em alimentos. Revista de nutrição, 19, 761-770. DOI: https://doi.org/10.1590/S1415-52732006000600011
Martins, L. O. S. & Andrade, D. A. S. (2021). Theoretical estimation of the potential for generating electricity from sugarcane, elephant grass and coconut from Bahia in Brazil. Textura, 14, 38-58. DOI: https://doi.org/10.22479/texturav14n2p38-58
Marzeddu, S., Cappelli, A., Ambrosio, A., Décima, M. A., Viotti, P., & Boni, M. R. (2021). A Life Cycle Assessment of an Energy-Biochar Chain Involving a Gasification Plant in Italy. Land, 10, 2-29. DOI: https://doi.org/10.3390/land10111256
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, Washington, 31(3), 426-428. DOI: https://doi.org/10.1021/ac60147a030
Mohammed, I. Y., Abakr, Y. A., Kazi, F. K., Yusup, S., Alshareef, I., & Chin S. A. (2015). Comprehensive characterization of Napier grass as a feedstock for thermochemical conversion. Energies, 8, 3403–3417. DOI: https://doi.org/10.3390/en8053403
Montero, J. I. Z., Monteiro, A. S. C., Gontijo, E. S. J., Bueno, C. C., Moraes, M. A. de, & Rosa, A. H. (2013). High efficiency removal of As (III) from waters using a new and friendly adsorbent based on sugarcane bagasse and corncob husk Fecoated biochars. Ecotoxicology Environ mental Safety, 162, 616–624. DOI: https://doi.org/10.1016/j.ecoenv.2018.07.042
Muniz, A. R. C., Berdet, G., & Silva, L. da. (2015). Potentiality Of Elephant Grass For The Production Of Second-Generation Ethanol. Anais Brazilian Congress of Chemical Engineering in Scientific Initiation. Campinas, SP, Brasil, 11. doi: 10.5151/chemeng-cobeqic2015-056-32017-263954. DOI: https://doi.org/10.5151/chemeng-cobeqic2015-056-32017-263954
Nizamuddin, S. et al. (2016). Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell. Fuel, 163, 88-97. DOI: https://doi.org/10.1016/j.fuel.2015.08.057
National Renewable Energy Laboratory. (2011). NREL/TP-510-42619: Determination of extractives in biomass. Golden: NREL.
Ortega-Santiago, M. A., Honorato-Salazar, J. A., Quero-Carrillo, A. R., Hernández-Garay, A., López Castañeda, C., & López-Guerrero, I. (2016). Biomassa de Urocholoa brizantha cv. Toledo com materia prima para la produccíon de bioetanol. Agrociência, 50 (6).
Pedroza, M. M. (2017). Energy use of urban solid waste in pyrolysis processes. Brazilian Journal of Renewable Energies, 6,184-207.
Pereira, A. V. et al. (2021). BRS Capiaçu and BRS Kurumi: Cultivation and Use. Brasília: Embrapa.
Pereira, D. G. S. (2013). Yields of enzymatic hydrolysis and alcoholic fermentantion of gamba grass, guinea grass, elephant grass and sugarcane bagasse for second generation ethanol production. (Master‘s Thesis) . Universidade Federal de Viçosa, Viçosa, MG, Brasil.
Peterlini, E. M., Arantes, M. D. C., Gonçalves, G. P. V., Vidaurre, G. P., Bauer, M. O., & Moulin, J. C. (2013). Evaluation of elephant grass for energy use. Journal of biotechnology and biodiversity, 4, 119-125. DOI: https://doi.org/10.20873/jbb.uft.cemaf.v4n2.paterlini
Rambo M. K. D., Schmidt F. L., & Ferreira, M. M. C. (2015). Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities. Talanta, 144, 696–703. DOI: https://doi.org/10.1016/j.talanta.2015.06.045
Rajeswari, G., Murugan, M., & Mohan, V. R. (2012). GC-MS analysis of bioactive components of Hugonia mystax L. (Linaceae). Research Journal of Pharmaceutical, Biological and Chemical Sciences, 3, 301-308.
Reddy, K. O., Maheswari, C. U., Dhlamini, M. S., Mothud,I B. M., Kommula, V. P., Zhang, J., & Rajulu, A. V. (2018). Extraction and characterization of cellulose single fibers from native African Napier grass. Carbohydrate Polymers, 188, 85–91. DOI: https://doi.org/10.1016/j.carbpol.2018.01.110
Reza, M. S., Islam, S. N., Afroze, S., Bakar, M. S. A., Sukri, R. S., Rahman, S., & Azad, A. K. (2020). Evaluation of the bio- energy potential of invasive Pennisetum purpureum through pyrolysis and thermogravimetric analysis. Energy, Ecology and Environment, 5, 118-133. DOI: https://doi.org/10.1007/s40974-019-00139-0
Rouquerol, J., Avnir, D., Fairbridge, C. W., Everett, D. H., Haynes, J. H., Pernicone, N., Ramsay, J. D. F., Unger, K. K. (1994). Recommendation for the characterization of porous solids. Pure and Applied Chemistry, 66, 1739-1758. DOI: https://doi.org/10.1351/pac199466081739
Samson, R., Mani, S., Boddey, R., Sokhansanj, S., Quesada, D., Urquiaga, S., Reis, V., & Holem, C. (2005). The potential of C4 perennial grasses for developing a global BIOHEAT industry. Critical Reviews in Plant Sciences, 24, 461-495. DOI: https://doi.org/10.1080/07352680500316508
Santos, F. A., Queiróz, J. H., Colodette, J. L., Fernandes, S. A., Guimarães, V. M., & Rezende, S. T. (2012). Potential of sugarcane straw for alcohol production. Química Nova, 35(5), 1004-1010. DOI: https://doi.org/10.1590/S0100-40422012000500025
Scopel, E., Santos, L. C., Bofinger, M. R., Martínez, J., & Rezende, C. A. (2020). Green extractions to obtain value-added elephant grass co-products in an ethanol biorefinery. Journal of Cleaner Production, 274. DOI: https://doi.org/10.1016/j.jclepro.2020.122769
Sharma, R. K., Wooten, J. B., Baliga, V. L., & Hajaligol, M. L. (2001). Characterization of chars from biomass-derived materials: pectin chars. Fuel, v. 80, 1825-1836. DOI: https://doi.org/10.1016/S0016-2361(01)00066-7
Silva, D. A., Alesi, L. S., Da Róz, A. L., Santos, L. R. O., & Quadros, T. M. C. (2018). Effect of Granulometry on Elephant Grass Biomass Compaction. Virtual Chemistry Journal, 10(2), 323-333.
Silveira Junior, E. G., Silveira, T. C., Perez, V. H., Justo, O. R., David, G. F., & Fernandes, S. A. (2022). Fast pyrolysis of elephant grass: Intensification of levoglucosan yield and other value-added pyrolytic by-products. Journal of the Energy Institute, 101, 254-264. DOI: https://doi.org/10.1016/j.joei.2022.02.003
Strezov, V., Evans, T. J., & Hayman, C. (2008). Thermal conversion of elephant grass (Pennisetum Purpureum Schum) to bio-gas, bio-oil and charcoal. Bioresource Technology, 99, 8394-8399. DOI: https://doi.org/10.1016/j.biortech.2008.02.039
Świątek, K., Gaag, S., Klier, A., Kruse, A., Sauer, J., & Steinbach, D. (2020). Acid Hydrolysis of Lignocellulosic Biomass: Sugars and Furfurals Formation. Catalysts, 10. DOI: https://doi.org/10.3390/catal10040437
Timung, R., Mohan, M., Chilukoti, B., Sasmal, S., Banerjee, T., & Goud, V. V. (2015). Optimization of dilute acid and hot water pretreatment of different lignocellulosic biomass: A comparative study. Biomass and Bioenergy, 81. DOI: https://doi.org/10.1016/j.biombioe.2015.05.006
Trevisan, H. & Rezende, C. A. (2020). Pure, stable and highly antioxidant lignin nanoparticles from elephant grass. Industrial Crops and Products, v. 145. DOI: https://doi.org/10.1016/j.indcrop.2020.112105
Vale, A. T, Mendes, R. M., Amorim, M. R. S., & Dantas, V. F. S. (2011). Energy Potential of Biomass and Charcoal of Epicarp and Jatropha Cake (Jatropha curcas). Cerne, 17, 267-273. DOI: https://doi.org/10.1590/S0104-77602011000200015
Venturini Filho, W. G. (2016). Non-alcoholic beverages: science and technology. São Paulo: Blucher.
Zeng, T., Weller, N., Pollex, A., & Lenz, V. (2016). Blended biomass pellets as fuel for small scale combustion appliances: Influence on gaseous and total particulate matter emissions and applicability of fuel indices. Fuel, 184, 689– 700. https://doi.org/10.1016/j.fuel.2016.07.04. DOI: https://doi.org/10.1016/j.fuel.2016.07.047
Zhang, Y., Ma, Z., Zhang, Q., Wang, J., Ma, Q., Yang, Y., Luo, X., & Zhang, W. (2017). Comparison of the physicochemical characteristics of biochar pyrolyzed from moso bamboo and rice husk with different pyrolysis temperatures. BioResources, 12, 4652–4669. DOI: https://doi.org/10.15376/biores.12.3.4652-4669
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ciência e Natura

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.


