Sustainable petrochemical plataform from Elephant Grass

Authors

DOI:

https://doi.org/10.5902/2179460X86488

Keywords:

Pyrolysis, Bio-oil, Biochar, Ethanol, Elephant grass

Abstract

The objective of this research is to demonstrate the potential of elephant grass (Pennisetum purpureum Schum) as biomass for obtaining other value-added byproducts, such as biofuels, lignocellulosic ethanol, adsorbents, among others. Through the pyrolysis process, biochar and bio-oil with average yields of 24.45% and 4.92% were produced, respectively The main components found in the bio-oil were carboxylic acids (64.47%), followed by esters (19.74%). The carbohydrate adsorption percentage observed in the biochar was lower than that found in commercial activated carbon, which is desirable in the food industry. Through scanning electron microscopy (SEM), it was possible to observe that the biochar consists of non-uniform particles with numerous pores, suggesting its potential use as an adsorbent material. The (BET and LANGMUIR) surface area values did not yield significant results; however, there was an increase in pore size after the pyrolysis process. The glucose content found in this study was 70.33%, and the reducing sugar content was 14.24 g.L-1. Based on the theoretical yield calculations for 2G ethanol, it is possible to infer a potential production of 0.88 tons of 2G ethanol per hectare of elephant grass planted per year. The calculated theoretical yield for levulinic acid (LA) was 35.16%, and for formic acid (FA), it was 14.07%. It is worth noting that the use of such waste for the production of biochar and bio-oil represents a promising and cost-effective alternative, as elephant grass is currently highlighted among the most exploited crops for energy purposes.

Downloads

Download data is not yet available.

Author Biographies

Regiani Crystina Barbazelli, Universidade Federal do Tocantins

Mathematics, Master’s in Electrical Engineering

Magale Karine Diel Rambo, Universidade Federal do Tocantins

PhD in Chemistry

Michele Cristiane Diel Rambo, Instituto Federal do Tocantins

PhD in Mathematics Education

Marysa de Kássia Guedes Soares Vital, Universidade Federal do Tocantins

Chemical Engineer, Master's in Biotechnology

Tayanna Fonseca Pimentel, Universidade Federal do Tocantins

Food Engineer, Master's Student in Biodiversity, Ecology, and Conservation

 

Guilherme Rocha dos Santos, Universidade Federal do Tocantins

Agricultural Engineer, Master's in Biodiversity, Ecology, and Conservation

Patrícia Martins Guarda, Universidade Federal do Tocantins

PhD in Biodiversity and Biotechnology

Vanilcia Clementina de Oliveira Marto, Universidade Federal do Tocantins

Biologist, Master's in Biodiversity, Ecology, and Conservation

References

Adeniyi, A. G., Ighalo, J. O., Iwuozor, K. O., & Amoloye, M. A. (2022). A study on the thermochemical co-conversion of poultry litter and elephant grass to biochar. Clean Technologies and Environmental Policy, 24, 2193–2202. DOI: https://doi.org/10.1007/s10098-022-02311-3

Adesemuyi, M. F., Adebayo, M. A., Akinola, A. O., Olasehinde, E. F.; Adewole, K. A., & Laj, L. (2020). Preparation and characterisation of biochars from elephant grass and their utilisation for aqueous nitrate removal: Effect of pyrolysis temperature. Journal of Environmental Chemical Engineering, 8. DOI: https://doi.org/10.1016/j.jece.2020.104507

Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., & Usman, A. R. A. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology, 131, 374–379. DOI: https://doi.org/10.1016/j.biortech.2012.12.165

Almeida, G. F. L. (2019). Second-Generation Alcohol Using Biomass Sorghum (Sorghum Bicolor). (Thesis Of Doctorate). Graduate

Program In Biofuels, Federal University Of The Jequitinhonha And Mucuri Valleys, Diamantina, Mg, Brasil. Available At: Http://Acervo.ufvjm.edu.br/Jspui/Handle/1/2066. American Society For Testing And Materials. (2017). ASTM D3173-17: Standard Test Method For Moisture In The Analysis Sample Of Coal And Coke. West Conshohocken: Astm.

American Society For Testing And Materials. (2018). ASTM D3174-12: Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal. West Conshohocken: ASTM.

American Society For Testing And Materials. (2020). ASTM D3175-20: Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke. West Conshohocken: ASTM.

Antonangelo J. A., Zhang H., Sun X., & Kumar A. (2019). Physicochemical properties and morphology of biochars as affected by feedstock sources and pyrolysis temperatures. Biochar., 1, 325–336. DOI: https://doi.org/10.1007/s42773-019-00028-z

Association Of Official Analytical Chemists. (1995). A.O.A.C. 1975: Methods of analysis of the Association of official Analytical Chemists. Washington: A.O.A.C.

Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M. H. A., & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: a review. Journal Food Engineering, 117, 426-436. DOI: https://doi.org/10.1016/j.jfoodeng.2013.01.014

Badgujar, K. C., Wilson, L. D., & Bhanage, B. M. (2019). Recent advances for sustainable pro- duction of levulinic acid in ionic liquids from biomass: Current scenario, opportunities and challenges. Renewable and Sustainable Energy Reviews, 102, 266–284. DOI: https://doi.org/10.1016/j.rser.2018.12.007

Bergmeyer, H.u. (Ed.). (1985). Methods of Enzymatic Analysis. (2a. ed.). New York: Academic Press.

Bordoloi, N.,Narzari, R.; Chutia, R. S., Bhaskar, T., & Kataki, R. (2015). Pyrolysis of Mesua ferrea and Pongamia glabra seed cover: characterization of bio-oil and its sub-fractions. Bioresource Technology, 178, 83–89. DOI: https://doi.org/10.1016/j.biortech.2014.10.079

Brosse, N., Dufour A., Meng X., Sun Q., & Ragauskas, A. (2012). Miscanthus: a fast-growning crop for biofuels and chemicals production. Biofuels, Bioproducts and Biorefining, v. 6, 580-598. DOI: https://doi.org/10.1002/bbb.1353

Chen, Y., Yang, H., Wang, X., Zhang, S., & Chen, H. (2012). Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: influence of temperature. Bioresource Technology, 107, 411–418. DOI: https://doi.org/10.1016/j.biortech.2011.10.074

Dantas, G. A., Legey, L. F. L., & Mazzone, A. (2013). Energy from sugarcane bagasse in Brazil: An assessment of the productivity and cost of different technological routes. Renewable & Sustainable Energy Reviews, 21. DOI: https://doi.org/10.1016/j.rser.2012.11.080

Essig, M., Lowary, G. N., Richards, E., & Schenck, E. (1988). Research in thermo chemical biomass conversion. Elsevier Applied Science.

Ferreira, S. D., Manera, C., Silvestre, W. P., Pauletti G. F., Altafini C. R., & Godinho, M. (2019). Use of biochar produced from elephant grass by pyrolysis in a screw reactor as a soil amendment. Waste and Biomass Valorization, 10, 3089–3100. DOI: https://doi.org/10.1007/s12649-018-0347-1

Fontoura, C. F., Brandão, L. E., & Gomes, L. L. (2015). Elephant grass biorefineries: towards a cleaner Brazilian energy matrix? Journal of Cleaner Production, 96. DOI: https://doi.org/10.1016/j.jclepro.2014.02.062

Freitas, M., Pianaro, S. A., Nadal, F. N., Tebcherani, S. M., & Berg, E. A. T. (2009). Preparação e caracterização de materiais compósitos SiC/caulim/Al via “squeeze-casting”. Cerâmica, 55, 271–280. DOI: https://doi.org/10.1590/S0366-69132009000300006

Jendoubi, N., Broust, F., Commandre, J. M., Mauviel, G., Sardin, M., & Lede, J. (2011). Inorganics distribution in biooils and char produced by biomass fast pyrolysis: the key role of aerosols. Journal of Analytical and Applied Pyrolysis, 92, 59–67. DOI: https://doi.org/10.1016/j.jaap.2011.04.007

Kamarullah, S. H., Mydin, M. M., Omar, W. S. A. W., Harith, S. S., Noor, B. H. M., Alias, N. Z. A., Manap, S. & Mohamad, R. (2015). Surface Morphology and chemical composition of Napier grass fibers. Malaysian Journal Analytical Sciences,19, 889–895.

Kumar, S., Ahluwalia, V., Kundu, P., Sangwan, R. S., Kansal, S. K., Runge, T. M., & Elumalai, S. (2018). Improved levulinic acid production from agri-residue biomass in biphasic solvent system through synergistic catalytic effect of acid and products. Bioresource Technology, 251, 143–150. DOI: https://doi.org/10.1016/j.biortech.2017.12.033

Lewoyehu, M. (2021). Comprehensive review on synthesis and application of activated carbon from agricultural residues for the remediation of venomous pollutants in wastewater. Journal of Analytical and Applied Pyrolysis, 159. DOI: https://doi.org/10.1016/j.jaap.2021.105279

Li, S. & Chen, G. (2018). Thermogravimetric, thermochemical, and infrared spectral characterization of feedstocks and biochar derived at different pyrolysis temperatures. Waste Management, 78, 198-207. DOI: https://doi.org/10.1016/j.wasman.2018.05.048

Ma, Z., Yang, Y., Ma, Q., Zhou, H., Luo, X., Liu, X., & Wang, S. (2017). Evolution of the chemical composition, functional group, pore structure and crystallographic structure of biochar from palm kernel shell pyrolysis under different temperatures. Journal of Analytical and Applied Pyrolysis, 127, 350–359. DOI: https://doi.org/10.1016/j.jaap.2017.07.015

Ma, Z., Yang, Y., Wu, Y., Xu, J., Peng, H., Liu, X., Zhang, W., & Wang, S. (2019). In-depth com- parison of the physicochemical characteristics of bio-char derived from biomass pseudo components: hemicellulose, cellulose, and lignin. Journal of Analytical and Applied Pyrolysis, 140, 195–204. DOI: https://doi.org/10.1016/j.jaap.2019.03.015

Mangwandi, C., Kurniawan, T. A., & Albadarin, A. B. (2020). Comparative biosorption of chromium (VI) using chemically modified date pits (CM-DP) and olive stone (CM-OS): Kinetics, isotherms and influence of co-existing ions. Chemical Engineering Research and Design, 156, 251–262. DOI: https://doi.org/10.1016/j.cherd.2020.01.034

Manna, S., Roy, D., Saha, P., & Adhikari. B. (2015). Defluoridation of aqueous solution using alkali–steam treated water hyacinth and elephant grass. Journal of the Taiwan Institute of Chemical Engineers, 50, 215-222. DOI: https://doi.org/10.1016/j.jtice.2014.12.003

Marafon, A.C., Amaral, A.F.C, Machado, J.C., Carneiro, J.D.C., Bierhals, A.N., & Guimarães, V.D.S. (2021). Chemical composition and calorific value of elephant grass varieties and other feedstocks intended for direct combustion. Grassl Sci. 2021, 67, 241–249. doi: https://doi.org/10.1111/grs.12311 DOI: https://doi.org/10.1111/grs.12311

Marasca, N., Cardoso, I., Rambo, M., Bertuol, D., Rambo, M., Guarda, E., & Scapin, E. (2022). Ultrasound Assisted Pretreatments Applied to Cupuaçu Husk (Theobroma grandiflorum) from Brazilian Legal Amazon for Biorefinery Concept. Journal of the brazilian chemical society, 23, 906-915. DOI: https://doi.org/10.21577/0103-5053.20220005

Martin, C. A., Almeida, V. V., Ruiz, R., Visentainer, J. E. L., Matshushita, M., Souza, N. E., & Visentainer, J. V. (2006). Ácidos graxos poliinsaturados ômega-3 e ômega-6: importância e ocorrência em alimentos. Revista de nutrição, 19, 761-770. DOI: https://doi.org/10.1590/S1415-52732006000600011

Martins, L. O. S. & Andrade, D. A. S. (2021). Theoretical estimation of the potential for generating electricity from sugarcane, elephant grass and coconut from Bahia in Brazil. Textura, 14, 38-58. DOI: https://doi.org/10.22479/texturav14n2p38-58

Marzeddu, S., Cappelli, A., Ambrosio, A., Décima, M. A., Viotti, P., & Boni, M. R. (2021). A Life Cycle Assessment of an Energy-Biochar Chain Involving a Gasification Plant in Italy. Land, 10, 2-29. DOI: https://doi.org/10.3390/land10111256

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, Washington, 31(3), 426-428. DOI: https://doi.org/10.1021/ac60147a030

Mohammed, I. Y., Abakr, Y. A., Kazi, F. K., Yusup, S., Alshareef, I., & Chin S. A. (2015). Comprehensive characterization of Napier grass as a feedstock for thermochemical conversion. Energies, 8, 3403–3417. DOI: https://doi.org/10.3390/en8053403

Montero, J. I. Z., Monteiro, A. S. C., Gontijo, E. S. J., Bueno, C. C., Moraes, M. A. de, & Rosa, A. H. (2013). High efficiency removal of As (III) from waters using a new and friendly adsorbent based on sugarcane bagasse and corncob husk Fecoated biochars. Ecotoxicology Environ mental Safety, 162, 616–624. DOI: https://doi.org/10.1016/j.ecoenv.2018.07.042

Muniz, A. R. C., Berdet, G., & Silva, L. da. (2015). Potentiality Of Elephant Grass For The Production Of Second-Generation Ethanol. Anais Brazilian Congress of Chemical Engineering in Scientific Initiation. Campinas, SP, Brasil, 11. doi: 10.5151/chemeng-cobeqic2015-056-32017-263954. DOI: https://doi.org/10.5151/chemeng-cobeqic2015-056-32017-263954

Nizamuddin, S. et al. (2016). Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell. Fuel, 163, 88-97. DOI: https://doi.org/10.1016/j.fuel.2015.08.057

National Renewable Energy Laboratory. (2011). NREL/TP-510-42619: Determination of extractives in biomass. Golden: NREL.

Ortega-Santiago, M. A., Honorato-Salazar, J. A., Quero-Carrillo, A. R., Hernández-Garay, A., López Castañeda, C., & López-Guerrero, I. (2016). Biomassa de Urocholoa brizantha cv. Toledo com materia prima para la produccíon de bioetanol. Agrociência, 50 (6).

Pedroza, M. M. (2017). Energy use of urban solid waste in pyrolysis processes. Brazilian Journal of Renewable Energies, 6,184-207.

Pereira, A. V. et al. (2021). BRS Capiaçu and BRS Kurumi: Cultivation and Use. Brasília: Embrapa.

Pereira, D. G. S. (2013). Yields of enzymatic hydrolysis and alcoholic fermentantion of gamba grass, guinea grass, elephant grass and sugarcane bagasse for second generation ethanol production. (Master‘s Thesis) . Universidade Federal de Viçosa, Viçosa, MG, Brasil.

Peterlini, E. M., Arantes, M. D. C., Gonçalves, G. P. V., Vidaurre, G. P., Bauer, M. O., & Moulin, J. C. (2013). Evaluation of elephant grass for energy use. Journal of biotechnology and biodiversity, 4, 119-125. DOI: https://doi.org/10.20873/jbb.uft.cemaf.v4n2.paterlini

Rambo M. K. D., Schmidt F. L., & Ferreira, M. M. C. (2015). Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities. Talanta, 144, 696–703. DOI: https://doi.org/10.1016/j.talanta.2015.06.045

Rajeswari, G., Murugan, M., & Mohan, V. R. (2012). GC-MS analysis of bioactive components of Hugonia mystax L. (Linaceae). Research Journal of Pharmaceutical, Biological and Chemical Sciences, 3, 301-308.

Reddy, K. O., Maheswari, C. U., Dhlamini, M. S., Mothud,I B. M., Kommula, V. P., Zhang, J., & Rajulu, A. V. (2018). Extraction and characterization of cellulose single fibers from native African Napier grass. Carbohydrate Polymers, 188, 85–91. DOI: https://doi.org/10.1016/j.carbpol.2018.01.110

Reza, M. S., Islam, S. N., Afroze, S., Bakar, M. S. A., Sukri, R. S., Rahman, S., & Azad, A. K. (2020). Evaluation of the bio- energy potential of invasive Pennisetum purpureum through pyrolysis and thermogravimetric analysis. Energy, Ecology and Environment, 5, 118-133. DOI: https://doi.org/10.1007/s40974-019-00139-0

Rouquerol, J., Avnir, D., Fairbridge, C. W., Everett, D. H., Haynes, J. H., Pernicone, N., Ramsay, J. D. F., Unger, K. K. (1994). Recommendation for the characterization of porous solids. Pure and Applied Chemistry, 66, 1739-1758. DOI: https://doi.org/10.1351/pac199466081739

Samson, R., Mani, S., Boddey, R., Sokhansanj, S., Quesada, D., Urquiaga, S., Reis, V., & Holem, C. (2005). The potential of C4 perennial grasses for developing a global BIOHEAT industry. Critical Reviews in Plant Sciences, 24, 461-495. DOI: https://doi.org/10.1080/07352680500316508

Santos, F. A., Queiróz, J. H., Colodette, J. L., Fernandes, S. A., Guimarães, V. M., & Rezende, S. T. (2012). Potential of sugarcane straw for alcohol production. Química Nova, 35(5), 1004-1010. DOI: https://doi.org/10.1590/S0100-40422012000500025

Scopel, E., Santos, L. C., Bofinger, M. R., Martínez, J., & Rezende, C. A. (2020). Green extractions to obtain value-added elephant grass co-products in an ethanol biorefinery. Journal of Cleaner Production, 274. DOI: https://doi.org/10.1016/j.jclepro.2020.122769

Sharma, R. K., Wooten, J. B., Baliga, V. L., & Hajaligol, M. L. (2001). Characterization of chars from biomass-derived materials: pectin chars. Fuel, v. 80, 1825-1836. DOI: https://doi.org/10.1016/S0016-2361(01)00066-7

Silva, D. A., Alesi, L. S., Da Róz, A. L., Santos, L. R. O., & Quadros, T. M. C. (2018). Effect of Granulometry on Elephant Grass Biomass Compaction. Virtual Chemistry Journal, 10(2), 323-333.

Silveira Junior, E. G., Silveira, T. C., Perez, V. H., Justo, O. R., David, G. F., & Fernandes, S. A. (2022). Fast pyrolysis of elephant grass: Intensification of levoglucosan yield and other value-added pyrolytic by-products. Journal of the Energy Institute, 101, 254-264. DOI: https://doi.org/10.1016/j.joei.2022.02.003

Strezov, V., Evans, T. J., & Hayman, C. (2008). Thermal conversion of elephant grass (Pennisetum Purpureum Schum) to bio-gas, bio-oil and charcoal. Bioresource Technology, 99, 8394-8399. DOI: https://doi.org/10.1016/j.biortech.2008.02.039

Świątek, K., Gaag, S., Klier, A., Kruse, A., Sauer, J., & Steinbach, D. (2020). Acid Hydrolysis of Lignocellulosic Biomass: Sugars and Furfurals Formation. Catalysts, 10. DOI: https://doi.org/10.3390/catal10040437

Timung, R., Mohan, M., Chilukoti, B., Sasmal, S., Banerjee, T., & Goud, V. V. (2015). Optimization of dilute acid and hot water pretreatment of different lignocellulosic biomass: A comparative study. Biomass and Bioenergy, 81. DOI: https://doi.org/10.1016/j.biombioe.2015.05.006

Trevisan, H. & Rezende, C. A. (2020). Pure, stable and highly antioxidant lignin nanoparticles from elephant grass. Industrial Crops and Products, v. 145. DOI: https://doi.org/10.1016/j.indcrop.2020.112105

Vale, A. T, Mendes, R. M., Amorim, M. R. S., & Dantas, V. F. S. (2011). Energy Potential of Biomass and Charcoal of Epicarp and Jatropha Cake (Jatropha curcas). Cerne, 17, 267-273. DOI: https://doi.org/10.1590/S0104-77602011000200015

Venturini Filho, W. G. (2016). Non-alcoholic beverages: science and technology. São Paulo: Blucher.

Zeng, T., Weller, N., Pollex, A., & Lenz, V. (2016). Blended biomass pellets as fuel for small scale combustion appliances: Influence on gaseous and total particulate matter emissions and applicability of fuel indices. Fuel, 184, 689– 700. https://doi.org/10.1016/j.fuel.2016.07.04. DOI: https://doi.org/10.1016/j.fuel.2016.07.047

Zhang, Y., Ma, Z., Zhang, Q., Wang, J., Ma, Q., Yang, Y., Luo, X., & Zhang, W. (2017). Comparison of the physicochemical characteristics of biochar pyrolyzed from moso bamboo and rice husk with different pyrolysis temperatures. BioResources, 12, 4652–4669. DOI: https://doi.org/10.15376/biores.12.3.4652-4669

Downloads

Published

2025-03-14

How to Cite

Barbazelli, R. C., Rambo, M. K. D., Rambo, M. C. D., Vital, M. de K. G. S., Pimentel, T. F., Santos, G. R. dos, Guarda, P. M., & Marto, V. C. de O. (2025). Sustainable petrochemical plataform from Elephant Grass. Ciência E Natura, 47, e86488. https://doi.org/10.5902/2179460X86488

Most read articles by the same author(s)