PREDICTION BY MULTIVARIATE CALIBRATION OF QUALITY PARAMETERS OF COFFEE RESIDUES

Authors

  • Magale Karine Diel Rambo Universidade Federal do Tocantins
  • Luana Priscilla Rodrigues Macêdo Universidade Federal do Tocantins- UFT, Araguaína- Brasil
  • Marcleane Mendes da Silva Instituto Federal de Educação, Ciência e Tecnologia do Tocantins- IFTO, Palmas, Brasil
  • Michele Cristiane Diel Rambo Instituto Federal de Educação, Ciência e Tecnologia do Tocantins- IFTO, Palmas, Brasil

DOI:

https://doi.org/10.5902/2179460X17124

Keywords:

Coffee. Ultimate analysis. NIR spectroscopy. Chemometrics.

Abstract

http://dx.doi.org/10.5902/2179460X17124

The real time prediction of the quality of the coffee biomass parameters allow greater efficiency in the energy industry and its production process, allowing the determination of multiple chemical components, while avoiding the extensive sample preparation. Multivariate calibration models using spectra obtained by near infrared spectroscopy (NIR) have been developed to predict the following properties of coffee: moisture, ash, fixed carbon and volatile content. Satisfactory results were obtained demonstrating the importance of methodology from the economic point of view, but also environmental, since residues from the coffee industry (husks) were evaluated and demonstrated use of potential.

Downloads

Download data is not yet available.

Author Biographies

Magale Karine Diel Rambo, Universidade Federal do Tocantins

Possui graduação em Química Licenciatura pela Universidade Federal de Santa Maria (2007), mestrado em Química pela Universidade Federal de Santa Maria (2009) e doutorado em Química pela Universidade Estadual de Campinas (2013), com estágio no grupo Carbolea da Universidade de Limerick (UL), Irlanda, participando de um projeto FP7, DIBANET (www.dibanet.org) entre a Comunidade Européia e a América Latina.Atualmente é Professora da Universidade Federal do Tocantins. Tem experiência na área de Química Analítica, com ênfase em Química Analítica Ambiental, Biocombustíveis, Biorrefinarias e Quimiometria.

Luana Priscilla Rodrigues Macêdo, Universidade Federal do Tocantins- UFT, Araguaína- Brasil

Aluna de Iniciação científica

Marcleane Mendes da Silva, Instituto Federal de Educação, Ciência e Tecnologia do Tocantins- IFTO, Palmas, Brasil

Aluna de Iniciação científica, Universidade Federal do Tocantins- UFT, Araguaína- Brasil

Michele Cristiane Diel Rambo, Instituto Federal de Educação, Ciência e Tecnologia do Tocantins- IFTO, Palmas, Brasil

Mestre, Instituto Federal de Educação, Ciência e Tecnologia do Tocantins- IFTO, Palmas, Brasil

References

Ali, M.; Emsley, A.M.; Herman, H.; Heywood, R.J. Spectroscopic studies of the ageing of cellulosic paper. Polym. 42 (2001) 2893-2900.

ASTM D 3173-87. Standard method for determination of moisture content in biomass; 2003.

ASTM D 3174-04. Standard method for ash in the analysis sample of coal and coke; 2004.

ASTM D 3175-07. Standard method for volatile matter in the analysis sample of coal; 2007.

Barbin, D.F.; Felicio, A.L.S.M.; WenSunb, D.; Nixdorf, S.L.; Hirooka, E.Y. Application of infrared spectral techniques on quality and compositional attributes of coffee: An overview. Food Res. Int. 61 (2014) 23–32.

Bruun, S.; Jensen, J.W.; Magid, J.; Lindedam, J.; Engelsen, S.B. Prediction of the degradability and ash content of wheat straw from different cultivars using near infrared spectroscopy. Ind. Crop Prod. 31 (2010) 321–326.

Everard, C. D.; McDonnell, K.P.; Fagan, C.C. Prediction of biomass gross calorific values using visible and near infrared spectroscopy. Biomass Bioenerg. 45 (2012) 203-211.

Geladi, P.; Kowalski, B.R. Partial least squares regression: A tutorial. Anal. Chim. Acta. 185 (1986) 1-17.

Gillespie, G.D.; Everard, C.M.; McDonnell, K.P. Prediction of biomass pellet quality indices using near infrared spectrocopy. Energy 80 (2015) 582-588.

ICO. International Coffee Organization. Disponível em http://www.ico.org/. Acessado: Janeiro/2013.

Kiran, E.U.; Trzcinski, A.P.; Jern Ng, W.; Liu,Y. Bioconversion of food waste to energy: A review. Fuel 134 (2104) 389-399.

Krzyzaniak,M.; Stolarski, M.J.; Waliszewska,B.; Szczukowski, S.; Tworkowski, J.; Załuski, D.; Snieg, M. Willow biomass as feedstock for an integrated multi-product biorefinery. Ind. Crop Prod. 58 (2014) 230–237

Lestander, T. A.; Rhen, C. Multivariate NIR spectroscopy models for moisture, ash and calorific content in biofuels using bi-orthogonal partial least squares regression. Analyst 130 (2005) 1182–1189.

Lestander, T. A.; Geladi, P. NIR spectral information used to predict water content of pine seeds from multivariate calibration. Can. J. For. Res. 35 (2005) 1139–1148.

MARTENS, H.; NAES, T. Multivariate Calibration. John Wiley e Sons, New York, 1996.

Murthy, P.S.; Naidu, M.M. Sustainable management of coffee industry by-products and value addition — A review. Resour. Conserv. Recy. 66 (2012) 45-58.

Pasquini, C. Near Infrared Spectroscopy: Fundamentals, Practical Aspects and Analytical Applications. J. Braz. Chem. Soc. v. 14, p.198-219, 2003.

Rambo, M.K.D; Amorim, E.P; Ferreira, M.M.C. Potential of visible-near infrared spectroscopy combined with chemometrics for analysis of some constituents of coffee and banana residues. Anal. Chim. Acta 775 (2013) 41-49.

Santos, R.C.; Carneiro, A.C.O.; Trugilho, P.F.; Mendes, L.M.; Carvalho, A.M.M.L. Análise termogravimétrica em clones de eucalipto como subsídio para a produção de carvão vegetal. Cerne 18 (2012) 143-151.

Savitzky, A.; Golay M.J. E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 36 (1964) 1627-1638.

Shenk, J. S.; Workman, J. J.; Westerhaus, M. O. Application of NIR Spectroscopy to Agricultural Products. In: (3 ed.). Burns, D. A. & Biurczak, E. W. Handbook of Near-Infrared Analysis, Florida, 2008.

Published

2015-05-30

How to Cite

Rambo, M. K. D., Macêdo, L. P. R., Silva, M. M. da, & Rambo, M. C. D. (2015). PREDICTION BY MULTIVARIATE CALIBRATION OF QUALITY PARAMETERS OF COFFEE RESIDUES. Ciência E Natura, 37(2), 374–380. https://doi.org/10.5902/2179460X17124

Issue

Section

Chemistry

Most read articles by the same author(s)