Sensitivity of an unusual cyclone in South America to convective parameterization schemes in RegCM5

Authors

DOI:

https://doi.org/10.5902/2179460X76666

Keywords:

Raoni, Subtropical transition, Convection, Model simulations, RegCM5

Abstract

Raoni storm (2021) was a remarkable and unusual cyclone that developed on the Atlantic coast of southern South America. This study evaluates the performance of different parameterization schemes with the RegCM5 model in simulating the evolution of Raoni. Results show that the Tiedtke convective scheme has the best performance in representing the evolution of the cyclone in terms of position, intensity and duration, though the maximum intensities are underestimated with respect to ERA5 reanalysis. The cyclone growth and its initial propagation are fairly well represented by the Emanuel scheme, but the cyclone dissipates too early. In the Grell scheme, the cyclone moved southeastward and then a new cyclone developed along the coast of southern Brazil. The erroneous representation of the upper-level structure prevented the decrease of vertical wind shear which is an important factor to the development of a low-level warm core. In terms of precipitation, all the convective schemes show the increased precipitation during the initial stages of the cyclone, followed by a rapid decrease. These findings would be helpful in choosing the more appropriate cumulus parameterization schemes for cyclone simulations over South America, and in improving model predictions given the existence of model bias derived by imperfections in physical parameterizations.

Downloads

Download data is not yet available.

Author Biographies

Henri Pinheiro, Universidade de São Paulo

s

Tercio Ambrizzi, Universidade de São Paulo

Department of Atmospheric Sciences

Jorge Conrado Conforte, National Institute for Space Research

Centre for Weather Forecast and Climate Studies (CPTEC)

References

Dickinson, R. E., Henderson-Sellers, A., & Kennedy, P. J. (1993). Biosphere-atmosphere transfer scheme (BATS) version le as coupled to the NCAR community climate model. Technical note. [NCAR (National Center for Atmospheric Research)]. Boulder, CO, United States. Scientific Computing Div.

Emanuel, K. A., & Živković-Rothman, M. (1999). Development and evaluation of a convection scheme for use in climate models. Journal of the Atmospheric Sciences, 56(11), 1766-1782. doi: https://doi.org/10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2

Giorgi, F., Marinucci, M. R., Bates, G. T., & De Canio, G. (1993). Development of a second-generation regional climate model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Monthly Weather Review, 121(10), 2814-2832. doi: https://doi.org/10.1175/1520-0493(1993)121<2814:DOASGR>2.0.CO;2

Giorgi, F., & Mearns, L. O. (1999). Introduction to special section: Regional climate modeling revisited. Journal of Geophysical Research: Atmospheres, 104(D6), 6335-6352. doi: https://doi.org/10.1029/98JD02072

Giorgi, F. et al. (2023). The Fifth Generation Regional Climate Modeling System, RegCM5: Description and Illustrative Examples at Parameterized Convection and Convection‐Permitting Resolutions. Journal of Geophysical Research: Atmospheres, 128(6), e2022JD038199. doi: https://doi.org/10.1029/2022JD038199

Guishard, M. P., Evans, J. L., & Hart, R. E. (2009). Atlantic subtropical storms. Part II: climatology. Journal of Climate, 22(13), 3574-3594. doi: https://doi.org/10.1175/2008JCLI2346.1

Herbasch, H, & Dee, D. (2016). ERA5 reanalysis is in production. ECMWF Newsletter, 147.

Hodges, K. I. (1995). Feature tracking on the unit sphere. Monthly Weather Review, 123(12), 3458-3465. doi: https://doi.org/10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2

Holtslag, A. A. M., De Bruijn, E. I. F., & Pan, H. L. (1990). A high resolution air mass transformation model for short-range weather forecasting. Monthly Weather Review, 118(8), 1561-1575, 1990. doi: https://doi.org/10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2

PREIN, A. F. et al. (2015). A review on regional convection‐permitting climate modeling: Demonstrations, prospects, and challenges. Reviews of geophysics, 53(2), 323-361. doi: https://doi.org/10.1002/2014RG000475

Mlawer, E. J., & Clough, S. A. (1997). On the extension of rapid radiative transfer model to the shortwave region. In: Proceedings of the 6th Atmospheric Radiation Measurement (ARM) Science Team Meeting, US Department of Energy, CONF-9603149.

Raju, P. V. S., Bhatla, R., Almazroui, M., & Assiri, M. (2015). Performance of convection schemes on the simulation of summer monsoon features over the South Asia CORDEX domain using RegCM‐4.3. International Journal of Climatology, 35(15), 4695-4706. doi:https://doi.org/10.1002/joc.4317

Reboita, M. S., Fernadez, J. P. R., Llopart, M. P., Rocha, R. P. da, Pampuch, L. A., & Cruz, F. T. (2014). Assessment of RegCM4. 3 over the CORDEX South America domain: sensitivity analysis for physical parameterization schemes. Climate Research, 60(3), 215-234. doi: https://doi.org/10.3354/cr01239

Reboita, M. S., Gozzo, L. F., Crespo, N. M., Custodio, M. D. S., Lucyrio, V., De Jesus, E. M., & Rocha, R. P. (2022). From a Shapiro–Keyser extratropical cyclone to the subtropical cyclone Raoni: An unusual winter synoptic situation over the South Atlantic Ocean. Quarterly Journal of the Royal Meteorological Society, 148(747), 2991-3009. doi: https://doi.org/10.1002/qj.4349

Rio, C., Del Genio, A. D., & Hourdin, F. (2019). Ongoing breakthroughs in convective parameterization. Current Climate Change Reports, 5, 95-111. doi: https://doi.org/10.1007/s40641-019-00127-w

Shapiro, M. A., & Keyser, D. (1990). Fronts, jet streams and the tropopause (pp. 167-191). In: Newton, C.W., & Holopainen, E.O. (eds) Extratropical Cyclones. American Meteorological Society, Boston, MA, pp. 168-191.

Tiedtke, M. A (1989). A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Monthly weather review, 117(8), 1779-1800. doi: https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2

Villafuerte, M. Q., Lambrento, J. C. R., Hodges, K. I., Cruz, F. T., Cinco, T. A., & Narisma, G. T. (2021). Sensitivity of tropical cyclones to convective parameterization schemes in RegCM4. Climate Dynamics, 56, 1625-1642. doi: https://doi.org/10.1007/s00382-020-05553-3

Yano, J. I., Bister, M., Fuchs, Ž., Gerard, L., Phillips, V. T. J., Barkidija, S., & Piriou, J. M. (2013) Phenomenology of convection-parameterization closure. Atmospheric Chemistry and Physics, 13(8), 4111-4131. doi: https://doi.org/10.5194/acp-13-4111-2013

Published

2025-04-30

How to Cite

Pinheiro, H., Ambrizzi, T., & Conforte, J. C. (2025). Sensitivity of an unusual cyclone in South America to convective parameterization schemes in RegCM5. Ciência E Natura, 47(esp. 3), e76666. https://doi.org/10.5902/2179460X76666

Most read articles by the same author(s)