In silico evaluation of erythrinic alkaloids from Erythrina verna in human crystallographic model GABAA R-β3 (4COF) and GABAA R-α1-β2-γ2 (6X3X)

Authors

DOI:

https://doi.org/10.5902/2179460X91221

Keywords:

Mulungu, Erythrina, In silico, Anxiolytic effect, Multivariate analysis

Abstract

Erythrina verna, known as mulungu, is a medicinal plant recognized for anxiolytic effects attributed to erythrinic alkaloids. This research aims to enhance our understanding of the mechanism of these alkaloids through in silico studies and explore their potential interaction with GABAA sub-receptors. Molecular modeling and docking simulations were performed to evaluate the conformational structure and interaction energies of the molecules as well as toxicity prediction. Multivariate statistical analyses were utilized to highlight the influence of binding affinity. The results indicate strong interactions of the erythrinic alkaloids with key amino acid residues from the GABAA receptor, while multivariate analysis revealed significant interaction patterns for erythradine and erysortrine. Mutagenic, tumorigenic, irritant, or reproductive risks were not observed in these molecules. So, erythrinic alkaloids exposure demonstrates safety and efficacy as a natural anxiolytic. It also contributes to our understanding of erythrinic alkaloids’ pharmacological effects and supports the further development of natural anxiolytics for therapeutic applications.

Downloads

Download data is not yet available.

Author Biographies

Marcelo Henrique Santana Nascimento, Universidade Federal de Santa Maria

Graduated in Pharmacy from UFSM.

Favero Reisdorfer Paula, Universidade Federal do Pampa

PhD in Biochemical-Pharmaceutical Technology.

Marcelo Barcellos da Rosa, Universidade Federal de Santa Maria

PhD in Natural Sciences.

Gustavo Andrade Ugalde, Universidade Federal de Santa Maria

PhD student in Pharmaceutical Sciences.

André Valle de Bairros, Universidade Federal de Santa Maria

PhD in Toxicology and Toxicological Analysis.

References

Carvalho, A. C. C. S., Almeida, D.S., Melo, M. G. D., Cavalcanti, S. C. H. & Marçal, R. M. (2009). Evidence of the mechanism of action of Erythrina velutina Willd (Fabaceae) leaves aqueous extract. J. Ethnopharmacol., 122(2), 374–378. DOI: https://doi.org/10.1016/j.jep.2008.12.019 DOI: https://doi.org/10.1016/j.jep.2008.12.019

Cemin, P., Ribeiro, S. R., Oliveira, F. C., Wagner, R. & Sant’Anna, V. (2024). Study of volatile compounds and sensory profile of Brazilians’ cocoa liquors. Int. J. Gastron. Food Sci., 37, 1-10. DOI: https://doi.org/10.1016/j.ijgfs.2024.100967 DOI: https://doi.org/10.1016/j.ijgfs.2024.100967

Chu, H. B., Tan, Y. De, Li, Y. J., Cheng, B. B., Rao, B. Q. & Zhou, L. S. (2019). Anxiolytic and anti-depressant effects of hydroalcoholic extract from Erythrina variegata and its possible mechanism of action. Afr. Health Sci., 19(3), 2526–2536. DOI: https://doi.org/10.4314/ahs.v19i3.28 DOI: https://doi.org/10.4314/ahs.v19i3.28

Clent, B. A., Wang, Y., Britton, H. C., Otto, F., Swain, C. J., Todd, M. H., Wilden, J. D. & Tabor, A. B. (2021). Molecular Docking with Open Access Software: Development of an Online Laboratory Handbook and Remote Workflow for Chemistry and Pharmacy Master’s Students to Undertake Computer-Aided Drug Design. J. Chem. Educ., 98(9), 2899–2905. DOI: https://doi.org/10.1021/ACS.JCHEMED.1C00289 DOI: https://doi.org/10.1021/acs.jchemed.1c00289

Craveiro, A. C. S., Carvalho, D. M. M., Nunes, R. D. S., Fakhouri, R., Rodrigues, S. A. & Teixeira-Silva, F. (2008) Toxicidade aguda do extrato aquoso de folhas de Erythrina velutina em animais experimentais. Revista Brasileira de Farmacognosia, 18:739–743. DOI: https://doi.org/10.1590/S0102-695X2008000500018 DOI: https://doi.org/10.1590/S0102-695X2008000500018

Flausino Junior, O. A. (2006) Análise fitoquímica e estudo biomonitorado de Erythrina mulungu (Leguminosae - Papilionaceae) em camundongos submetidos a diferentes modelos animais de ansiedade. [Tese de Doutorado em Ciências, Universidade de São Paulo]. Biblioteca Digital de Teses e Dissertações da USP. http://www.teses.usp.br/teses/disponiveis/59/59134/tde-22062007-134229/

Flausino Junior, O. A., Santos, L. D. A., Verli, H., Pereira, A. M., Bolzani, V. D. S. & Nunes-de-Souza, R. L. (2007). Anxiolytic effects of erythrinian alkaloids from Erythrina mulungu. J. Nat. Prod., 70(1), 48–53. DOI: https://doi.org/10.1021/np060254j DOI: https://doi.org/10.1021/np060254j

Iturriaga-Vásquez, P., Carbone, A., García-Beltrán, O., Livingstone, P. D., Biggin, P. C., Cassels, B. K., Wonnacott, S., Zapata-Torres, G. & Bermudez, I. (2010). Molecular determinants for competitive inhibition of α4β2 nicotinic acetylcholine receptors. Mol. Pharmacol., 78(3), 366–375. DOI: https://doi.org/10.1124/mol.110.065490 DOI: https://doi.org/10.1124/mol.110.065490

Kim, J. J., Gharpure, A., Teng, J., Zhuang, Y., Howard, R. J., Zhu, S., Noviello, C. M., Walsh, R. M., Lindahl, E. & Hibbs, R. E. (2020). Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature, 585(7824), 303–308. DOI: https://doi.org/10.1038/s41586-020-2654-5 DOI: https://doi.org/10.1038/s41586-020-2654-5

Miller, P. S. & Aricescu, A. R. (2014). Crystal structure of a human GABAA receptor. Nature, 512(7514), 270. DOI: https://doi.org/10.1038/NATURE13293 DOI: https://doi.org/10.1038/nature13293

Olsen, R.W. (2018). GABAA receptor: Positive and negative allosteric modulators. Neuropharmacology, 136, 10–22. DOI: https://doi.org/10.1016/j.neuropharm.2018.01.036 DOI: https://doi.org/10.1016/j.neuropharm.2018.01.036

Onusic, G. M., Nogueira, R. L., Pereira, A. M. S., Flausino Junior, O. A. & Viana, M. B. (2003). Effects of Chronic Treatment with a Water-Alcohol Extract from Erythrina mulungu on Anxiety-Related Responses in Rats. Biol. Pharm. Bull., 26(11), 1538-1542. DOI: https://doi.org/10.1248/bpb.26.1538 DOI: https://doi.org/10.1248/bpb.26.1538

Onusic G. M., Nogueira R. L., Pereira, A. M. S. & Viana, M. B. (2002). Effect of acute treatment with a water-alcohol extract of Erythrina mulungu on anxiety-related responses in rats. Brazilian Journal of Medical and Biological Research, 35(4), 473–477. DOI: https://doi.org/10.1590/S0100-879X2002000400011 DOI: https://doi.org/10.1590/S0100-879X2002000400011

Pitchaiah, G., Viswanatha, G. L., Srinath, R., & Nandakumar, K. (2008). Pharmacological evaluation of alcoholic of stem bark of erythrina variegata for anxiolytic and anticonvulsant activity in mice. Pharmacologyonline, 3, 934-947.

Ribeiro, M. D., Onusic, G.M., Poltronieri, S. C. & Viana, M. B. (2006) Effect of Erythrina velutina and Erythrina mulungu in rats submitted to animal models of anxiety and depression. Brazilian Journal of Medical and Biological Research, 39(2), 263–270. DOI: https://doi.org/10.1590/S0100-879X2006000200013 DOI: https://doi.org/10.1590/S0100-879X2006000200013

Rogers, K. L., Grice, I. D. & Griffiths, L. R. (2001). Modulation of in vitro platelet 5-HT release by species of Erythrina and Cymbopogon. Life Sci., 69(15),1817–1829. DOI: https://doi.org/10.1016/S0024-3205(01)01266-8 DOI: https://doi.org/10.1016/S0024-3205(01)01266-8

Sahila, M. M., Pulikkal, B. P., Bandaru, S., Nayarisseri, A. & Doss, V. A. (2015). Molecular docking based screening of GABA (A) receptor inhibitors from plant derivatives. Bioinformation, 11(6), 280. DOI: https://doi.org/10.6026/97320630011280 DOI: https://doi.org/10.6026/97320630011280

Schleier, R., Quirino, C. S. & Rahme, S. (2016) Erythrina mulungu – descrição botânica e indicações clínicas a partir da antroposofia. Arte Médica Ampliada, 36(4), 162–167.

Sieghart, W. & Savic, M. M. (2018). International union of basic and clinical pharmacology. CVI: GABAA receptor subtype-and function-selective ligands: Key issues in translation to humans. Pharmacol. Rev., 70(4), 836–878. DOI: https://doi.org/10.1124/PR.117.014449 DOI: https://doi.org/10.1124/pr.117.014449

Sigel, E. & Ernst, M. (2018). The Benzodiazepine Binding Sites of GABAA Receptors. Trends Pharmacol. Sci., 39(7), 659–671. DOI: https://doi.org/10.1016/j.tips.2018.03.006 DOI: https://doi.org/10.1016/j.tips.2018.03.006

Tretter, V., Ehya, N., Fuchs, K. & Sieghart, W. (1997) Stoichiometry and Assembly of a Recombinant GABA A Receptor Subtype. J. Neurosci., 17(8), 2728-2737. DOI: https://doi.org/10.1523/JNEUROSCI.17-08-02728 DOI: https://doi.org/10.1523/JNEUROSCI.17-08-02728.1997

Vasconcelos, S. M. M., Lima, N. M., Sales, G. T. M., Cunha, G. M. A., Aguiar, L. M. V., Silveira, E. R., Rodrigues, A. C. P., Macedo, D. S., Fonteles, M. M. F., Sousa, F. C. F. & Viana, G. S. B. (2007). Anticonvulsant activity of hydroalcoholic extracts from Erythrina velutina and Erythrina mulungu. J. Ethnopharmacol., 110(2), 271–274. DOI: https://doi.org/10.1016/J.JEP.2006.09.023 DOI: https://doi.org/10.1016/j.jep.2006.09.023

Downloads

Published

2025-06-27

How to Cite

Nascimento, M. H. S., Paula, F. R., Rosa, M. B. da, Ugalde, G. A., & Bairros, A. V. de. (2025). In silico evaluation of erythrinic alkaloids from Erythrina verna in human crystallographic model GABAA R-β3 (4COF) and GABAA R-α1-β2-γ2 (6X3X). Ciência E Natura, 47, e91221. https://doi.org/10.5902/2179460X91221

Most read articles by the same author(s)