PCA: a mathematical tool for the analysis of agricultural and livestock COREDEs in Rio Grande do Sul

Authors

DOI:

https://doi.org/10.5902/2179460X90532

Keywords:

Principal component analysis, Spectral decomposition, Census of agriculture, COREDEs

Abstract

This study aimed to reduce the original data matrix from the agricultural Regional Development Councils (COREDEs) of Rio Grande do Sul, utilizing information from the 2017 Agricultural Census. We commenced with a rigorous exposition on mathematical results underpinning Principal Components Analysis (PCA), culminating in an appliction of PCA that significantly reduced the initially collected data from 15 variables to only three components, which collectively explained approximately 87\% of the data variance. These insights have the potential to influence decision-making in agricultural policies and regional development strategies targeted at these COREDEs.

Downloads

Download data is not yet available.

Author Biographies

Rafael Pentiado Poerschke, Universidade Federal de Santa Maria

PhD in International Strategic Studies.

João Roberto Lazzarin, Universidade Federal de Santa Maria

Doctorate in Mathematics from the Federal University of Rio Grande do Sul.

Fernando Colman Tura, Universidade Federal de Santa Maria

Doctorate in Applied Mathematics from the Federal University of Rio Grande do Sul. Completed a postdoctoral fellowship at Georgia State University from 2022 to 2023. 

References

Bartle, R. G. (1983). Elementos de an´alise real. Campus.

Freitas, C. A., Paz, M. V., & Nicola, D. S. (2007). Analisando a modernização da agropecu´aria ga´ucha: uma aplicação de an´alise fatorial e cluster. An´alise Econˆomica, 25(47), 121–149.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of educational psychology, 24(6), 417–441.

IBGE (2018). Censo Agropecu´ario 2017: resultados definitivos. IBGE.

Johnson, R. A. & Wichern, D. W. (2002). Applied multivariate statistical analysis. Prentice hall Upper Saddle River.

Jolliffe, I. T. (2002). Principal Component Analysis. Springer.

J¨oreskog, K. G. (1979). Basic Ideas of Factor and Component Analysis. In Joreskog, K.G. and Sorbom, D. (Eds.), Advances in Factor Analysis and Structural Equation Models (pp. 5-20). University Press of America.

Kageyama, A. & Leone, E. T. (1999). Uma tipologia dos munic´ıpios paulistas com base em indicadores sociodemogr´aficos. UNICAMP/IE.

Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate analysis. Academic Press.

Poerschke, R. P. & Junior, F. d. J. M. (2020). An´alise multivariada de dados socieconˆomicos: um retrato da modernizac¸ ˜ao agropecu´aria nos coredes do rio grande do sul. Ciˆencia e Natura, 42, e13–e13.

Schneider, S. & Waquil, P. D. (2001). Caracterizac¸ ˜ao socioeconˆomica dos munic´ıpios ga´uchos e desigualdades regionais. Revista de Economia e Sociologia Rural, 39(3), 117–142.

Strang, G. (2019). Linear algebra and learning from data. SIAM.

Vidal, R., Ma, Y., & Sastry, S. (2005). Generalized principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(12), 1–15.

Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American statistical association, 58(301), 236–244.

Published

2025-02-14

How to Cite

Poerschke, R. P., Lazzarin, J. R., & Tura, F. C. (2025). PCA: a mathematical tool for the analysis of agricultural and livestock COREDEs in Rio Grande do Sul. Ciência E Natura, 47(esp. 1). https://doi.org/10.5902/2179460X90532

Issue

Section

IV Jornada de Matematica e Matematica aplicada UFSM