Modeling the advection-diffusion-reaction equation and its application in a power plant

Authors

DOI:

https://doi.org/10.5902/2179460X46844

Keywords:

Advection-diffusion-reaction, Model, Dispersion

Abstract

This work aims to create a dispersion model solving the advection-diffusion-reaction equation including the main reactions of NOx and SO2 in the atmosphere. Data from the power plant Luiz Oscar Rodrigues de Melo were used as a model application and validation of the predicted concentrations.

Downloads

Download data is not yet available.

Author Biographies

Juliana Schramm, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS

Formação em engenharia química - UFRGS, mestrado em engenharia na área de fenômenos de transporte - UFRGS, doutorado em andamento em engenharia (fenômenos de transporte) - UFRGS

Bardo Bodmann, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS

Possui graduação em Física - Johannes Gutenberg Universität Mainz, mestrado em Física - Friedrich Alexander Universität Erlangen Nürnberg e doutorado em Física - Friedrich Alexander Universität Erlangen Nürnberg

References

BALL, S. Atmospheric chemistry at night. ECG Environmental Briefs No. 3, 2014.

BARKER, E. H.; BAXTER, T. L. A Note on the Computation of Atmospheric Surface Layer Fluxes for Use in Numerical Modeling. Journal of Applied Meteorology, 14, 620-622, 1975.

BERKOWICZ, R.; OLESEN, H. R.; TORP, U. The Danish Gaussian air pollution model (OML): description, test and sensitivity analysis in view of regulatory applications. In:___ Air Pollution Modeling and Its Application V. Springer Science+Business Media, New York, 1986, 453-481,

BURKHOLDER, J. B.; SANDER, S. P.; ABBATT, J.; BARKER, J. R.; HUIE, R. E.; KOLB, C. E.; KURYLO, M. J.; ORKIN, V. L.; WILMOUTH, D. M.; WINE, P. H. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, No. 18. Pasadena: JPL Publication 15-10, 2015.

BUSINGER, J. A.; WYNGAARD, J. C.; IZUMI, Y.; BRADLEY, E. F. Flux-Profile Relationships in the Atmospheric Surface Layer. Journal of the Atmospheric Sciences, 28, 181-189, 1971.

DEGRAZIA, G. A.; RIZZA, U.; MANGIA, C.; TIRABASSI, T. Validation of a new turbulent parameterization for dispersion models in convective conditions. Boundary-Layer Meteorology, 85, 243-254, 1997.

DEGRAZIA, G. A.; VILHENA, M. T.; MORAES, O. L. L. An algebraic expression for the eddy diffusivities in the stable boundary layer: A description of near-source diffusion. Il Nuovo Cimento, 19C, 399-403, 1996.

JACOB, D. J. Introduction to atmospheric chemistry. Princeton: Princeton University Press, 1999.

NIEUWSTADT, F. T. M. The Turbulent Structure of the Stable, Nocturnal Boundary Layer. Journal of the Atmospheric Sciences, 41, 2202-2216, 1984.

OLESEN, H.R.; LARSEN, S. E.; HØJSTRUP, J. Modelling velocity spectra in the lower part of the planetary boundary layer. Boundary-Layer Meteorology, 29, 285-312, 1984.

SEINFELD, J. H.; PANDIS, S. N. Atmospheric Chemistry and Physics – From Air Pollution to Climate Change, 2 ed. Hoboken, New Jersey: John Wiley & Sons, Inc., 2006.

SORBJAN, Z. Local similarity of spectral and cospectral characteristics in the stable-continuous boundary layer. Boundary-Layer Meteorology, 35, 257-275, 1986.

Published

2020-08-28

How to Cite

Schramm, J., & Bodmann, B. (2020). Modeling the advection-diffusion-reaction equation and its application in a power plant. Ciência E Natura, 42, e20. https://doi.org/10.5902/2179460X46844

Most read articles by the same author(s)