A GENUINE SOLUTION OF THE DIFFUSION ADVECTION EQUATION SESQUILINEAR WAY TO MULTI-SOURCE PROBLEM

Authors

  • Debora Lidia Gisch Universidade Federal Rio Grande do Sul
  • Bardo Bodmann Programa de Pós-Graduação em Engenharia Mecânica, UFRGS, Porto Alegre, RS, Brasil
  • Marco Túllio Menna Barreto de Vilhena Programa de Pós-Graduação em Engenharia Mecânica, UFRGS, Porto Alegre, RS, Brasil

DOI:

https://doi.org/10.5902/2179460X20092

Keywords:

Pollution dispersion. Coherent structures. Sesquilinear forms.

Abstract

The present work is a proposal for an alternative approach for pollution dispersion modelling, including some characteristics that may be associated to the phenomenon of turbulence. As a starting point we consider two axiomatic properties that shall lead to a model and its solution compatible with distributional descriptions. The first one states that a solution shall be semi-positive as expected for a distribution, whereas the second axiom demands for compatibility with coherent structures, which are implemented by the use of sesquilinear forms.

Downloads

Download data is not yet available.

Author Biography

Debora Lidia Gisch, Universidade Federal Rio Grande do Sul

Departamento Engenharia Mecânica

Fenômeno de Transporte

References

Arya, S. P. (1999). Air Pollution Meteorology and Dispersion.

Oxford University Press, New York, USA.

Bodmann, B. E. J., Zabadal, J. R. S., Vilhena, M. T.,

Quadros, R. (2013). On coherent structures from a diffusion-like model. Em: Integral Methods in Science and Engineering, Springer New York Heidelberg Dordrecht London, pp. 1–10.

Gisch, D. L., Bodmann, B. E. J., Vilhena, M. T. (2015). Two reasons why pollution dispersion modelling needs sesquilinear forms. Em: Integral Methods in Science and

Engineering, Springer International Publishing Switzerland, p Umpublished.

Hussain, A. K., Fazle, M. (1986). Coherent structures and turbulence. Journal of Fluid Mechanics, 173, 303, URL http://www.journals.cambridge.org/abstract_S0022112086001192.

Jackson, J. D. (1999). Classical electrodynamics, 3o edn. Wiley, New York, NY, URL http://cdsweb.cern.ch/record/490457.

Stull, R. B. (1988). An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht, Holanda.

Published

2016-07-20

How to Cite

Gisch, D. L., Bodmann, B., & Vilhena, M. T. M. B. de. (2016). A GENUINE SOLUTION OF THE DIFFUSION ADVECTION EQUATION SESQUILINEAR WAY TO MULTI-SOURCE PROBLEM. Ciência E Natura, 38, 80–83. https://doi.org/10.5902/2179460X20092

Most read articles by the same author(s)

1 2 > >>