Scientometric analysis applied to the water treatment with activated carbon
DOI:
https://doi.org/10.5902/2179460X41226Keywords:
Scientometry, Biomaterials, Wastewater, WasteAbstract
The current moment requires the development of new technologies that can provide alternatives to conventional treatment and that efficiently remove pollutants that are difficult to treat. Activated carbon has been highlighted as low cost material that can be used as adsorbents for the removal of contaminants. Thus, the aim of the present study was to analyse the relevant literature related to the production of activated carbon for the treatment of water. For the study, there were found 4,182 relevant studies in the database of the Web of Science and from these restrictions and readings were obtained 27 articles. The information obtained was: i - temporal evolution of publications, ii - distribution of articles by periodicals, iii - spatial distribution, iv - precursor material, v - activation technology, vi - pollutants and vii - treatment efficiency. Results show that the activated carbon produced from corn and industrial ash residues are good adsorbents. Dyes, heavy metals and phenols were the most studied pollutants, and had the higher treatment efficiency values. The approach of the present study allows to identify the main points of this new technology and it helps to support new researches and applications
Downloads
References
AFROZE S, SEN TK. A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water, Air, & Soil Pollution. 2018; 229(7). doi:10.1007/s11270-018-3869-z
AKPA JG; NMEGBU CGJ. Adsorption of benzene on activated carbon from agricultural waste materials research. Journal of Chemical Sciences. 2014; 4(9): 34-40.
CASTRO JP, NOBRE JRC, BIANCHI ML, TRUGILHO PF, NAPOLI A, CHIOU B-S, WILLIAMS TG, WOOD DF, AVENA-BUSTILLOS RJ, ORTS WJ, TONOLI GHD. Activated carbons prepared by physical activation from different pretreatments of amazon piassava fibers. Journal of Natural Fibers. 2018: 1-16.
CLAUDINO A. Preparação de carvão ativado a partir de turfa e sua utilização na remoção de poluentes. 2003.
CRINI G, LICHTFOUSE E. Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters. 2018; 17(1): 145-155.
DA SILVA FB, DO NASCIMENTO CW, ARAUJO PR, DA SILVA LH, DA SILVA RF. Assessing heavy metal sources in sugarcane Brazilian soils: an approach using multivariate analysis. Environ Monit Assess. 2016; 188(8): 457.
FERREIRA MERCURI EG, JAKUBIAK KUMATA AY, AMARAL EB, SIMÕES VITULE JR. Energy by Microbial Fuel Cells: Scientometric global synthesis and challenges. Renewable and Sustainable Energy Reviews. 2016; 65: 832-840.
GODIYA CB, CHENG X, LI D, CHEN Z, LU X. Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater. J Hazard Mater; 2019; 364: 28-38.
GOLIN DM. Remoção de chumbo de meios líquidos através de adsorção utilizando carvão ativado de origem vegetal e resíduos vegetais. [dissertation]. Curitiba: Universidade Federal do Paraná, Programa de Pós-Graduação em Engenharia de Recursos Hídricos e Minerais, 2007. 111 p.
HAGEMANN N, SPOKAS K, SCHMIDT H-P, KÄGI R, BÖHLER M, BUCHELI T. activated carbon, biochar and charcoal: linkages and synergies across pyrogenic carbon’s ABCs. Water. 2018; 10(2):182.
HETTIARACHCHI E, PERERA R, CHANDANI PERERA ADL, KOTTEGODA N. Activated coconut coir for removal of sodium and magnesium ions from saline water. Desalination and Water Treatment. 2016; 57(47): 22341-22352.
KAUSAR A, IQBAL M, JAVED A, AFTAB K, NAZLI ZIH, BHATTI HN, NOUREN S. Dyes adsorption using clay and modified clay: A review. Journal of Molecular Liquids. 2018; 256: 395-407.
KOOPAL L, TAN W, AVENA M. Mixed ad/desorption kinetics unraveled with the equilibrium adsorption isotherm. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2019; 577: 709-722.
KOSHELEVA RI, MITROPOULOS AC, KYZAS GZ. Synthesis of activated carbon from food waste. Environmental Chemistry Letters. 2018; 17(1): 429-438.
LIEW RK, CHONG MY, OSAZUWA OU, NAM WL, PHANG XY, SU MH, CHENG CK, CHONG CT, LAM SS. Production of activated carbon as catalyst support by microwave pyrolysis of palm kernel shell: a comparative study of chemical versus physical activation. Research on Chemical Intermediates. 2018; 44(6): 3849-3865.
MAMANÍ A, SARDELLA MF, GIMÉNEZ M, DEIANA C. Highly microporous carbons from olive tree pruning: Optimization of chemical activation conditions. Journal of Environmental Chemical Engineering. 2019; 7(1): 102830.
PALLARÉS J, GONZÁLEZ-CENCERRADO A, ARAUZO I. Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass and Bioenergy. 2018; 115: 64-73.
PEDROZA MM, SILVA APOD, MELO JVD, PAZ EDCS, PAZ RRDS. Ensaio de adsorção de ácido acético em carvão produzido a partir da fibra de coccus nucifera l. Brazilian Journal of Development, 2019; 5(6): 4784-4796.
PRADEEP GG, SUKUMARAN KP, GEORGE G, MUHAMMAD F, MATHEW, N. Production and characterization of activated carbon and its application in water purification. International Research Journal of Engineering and Technology. 2016; 3(8).
SOARES JL. Remoção de corantes têxteis por adsorção em carvão mineral ativado com alto teor de cinzas. 1998.
SONG T, YU C, HE X, LIN J, LIU Z, YANG X, ZHANG Y, HUANG Y, TANG C. Synthesis of magnetically separable porous BN microrods@Fe3O4 nanocomposites for Pb(II) adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2018; 537: 508-515.
TOVAR AK, GODINEZ LA, ESPEJEL F, RAMIREZ-ZAMORA RM, ROBLES I. Optimization of the integral valorization process for orange peel waste using a design of experiments approach: Production of high-quality pectin and activated carbon. Waste Manag. 2019; 85: 202-213.
WONG S, NGADI N, INUWA IM, HASSAN O. Recent advances in applications of activated carbon from biowaste for wastewater treatment: A short review. Journal of Cleaner Production. 2018; 175: 361-375.
Published
Versions
- 2022-04-19 (2)
- 2020-01-15 (1)
How to Cite
Issue
Section
License
Copyright (c) 2020 Ciência e Natura
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.