Effect of the natural antioxidant eugenol on quality preservation of commercial biodiesels produced with soybean oil or waste frying oil during storage at different temperatures

Authors

  • Eliane Ferreira de Souza Universidade Estadual de Mato Grosso do Sul- Pós-graduação em Recursos Naturais/Centro de Estudos em Recursos Naturais - CERNA https://orcid.org/0000-0002-9721-4464
  • Talita Cuenca Pina Moreira Ramos Universidade Estadual de Mato Grosso do Sul- Pós-graduação em Recursos Naturais/Centro de Estudos em Recursos Naturais - CERNA https://orcid.org/0000-0002-3205-0681
  • Mikaelly Nayara Santos Universidade Estadual de Mato Grosso do Sul- Pós-graduação em Recursos Naturais/Centro de Estudos em Recursos Naturais - CERNA https://orcid.org/0000-0001-8923-7124
  • Juliana Rodrigues Ferraz Universidade Estadual de Mato Grosso do Sul- Unidade Acadêmica de Química Industrial/Centro de Estudos em Recursos Naturais - CERNA
  • Margarete Soares da Silva Universidade Estadual de Mato Grosso do Sul- Pós-graduação em Recursos Naturais/Centro de Estudos em Recursos Naturais - CERNA https://orcid.org/0000-0002-2285-8046
  • Margareth Batistote Universidade Estadual de Mato Grosso do Sul- Pós-graduação em Recursos Naturais/Centro de Estudos em Recursos Naturais - CERNA https://orcid.org/0000-0001-9865-2362
  • Antonio Rogério Fiorucci Universidade Estadual de Mato Grosso do Sul- Pós-graduação em Recursos Naturais/Centro de Estudos em Recursos Naturais - CERNA https://orcid.org/0000-0001-9441-1561

DOI:

https://doi.org/10.5902/2179460X32810

Keywords:

Oxidation stability, Rancimat method, Acid Number

Abstract

The objetive of this study was to evaluate the eugenol antioxidant efficiency on the oxidation stability of commercial biodiesel synthesized from soybean oil (SB) and wast fring oil (ORB) by determining induction period (IP) and acid number (AN) during storage at 10 °C or in accelerated oxidation test at 85 °C. For the oxidation stability evaluation, the Rancimat method (EN 14112) and AN (ASTM D664) analyses were used. The initial studies showed that the antioxidants eugenol and TBHQ when added separately increased IP values for the two types of biodiesel analyzed. During the storage at 10 °C, the IP was reduced for all samples. However, the lowest reduction percentages were for samples containing eugenol (-2.07 and -11.30% for SB and ORB, respectively). In relation to AN, the samples with the antioxidant eugenol led a greater decrease of this index, with the 10000 mg kg-1 concentration being the most efficient in the conservation of biodiesel. In the accelerated oxidation test in oven at 85 °C, pure BS presented higher susceptibility to degradation than the sample containing 10000 mg kg-1 of eugenol. In both storage studies, the eugenol natural antioxidant efficiency in the control of oxidative degradation of biodiesel becomes evident.

Downloads

Download data is not yet available.

Author Biographies

Eliane Ferreira de Souza, Universidade Estadual de Mato Grosso do Sul- Pós-graduação em Recursos Naturais/Centro de Estudos em Recursos Naturais - CERNA

Possui graduação pela Universidade Federal de Mato Grosso do Sul (Agronomia) e graduação pela Universidade Estadual do Mato Grosso do Sul (Tecnologia em Alimentos). Pós-Graduação em Biotecnologia Genética pela Universidade Estadual de Maringá, Mestrado e Doutorado (em andamento) em Recursos Naturais pela Universidade Estadual do Mato Grosso do Sul.

Talita Cuenca Pina Moreira Ramos, Universidade Estadual de Mato Grosso do Sul- Pós-graduação em Recursos Naturais/Centro de Estudos em Recursos Naturais - CERNA

Graduada em Ciências Biológicas (licenciatura e bacharelado com ênfase em Ciências Ambientais) pela Universidade para o Desenvolvimento do Estado e da Região do Pantanal - UNIDERP (2006). Mestre em Recursos Naturais pela Universidade Estadual de Mato Grosso do Sul - UEMS (2017). Atualmente, aluna de doutorado em Recursos Naturais da Universidade Estadual de Mato Grosso do Sul - UEMS, área de avaliação da CAPES - Ciências Ambientais.

Mikaelly Nayara Santos, Universidade Estadual de Mato Grosso do Sul- Pós-graduação em Recursos Naturais/Centro de Estudos em Recursos Naturais - CERNA

Doutoranda em Recursos Naturais na Universidade Estadual de Mato Grosso do Sul - UEMS. Possui mestrado em Recursos Naturais pela Universidade Estadual de Mato Grosso do Sul (2018), especialização em Gestão e Educação Ambiental na Uniasselvi (2015) e graduação em Tecnologia em Gestão Ambiental na Universidade Estadual de Mato Grosso do Sul - UEMS (2013). Tem enfoque na pesquisa de antioxidantes e estabilidade oxidativa de biodiesel

Juliana Rodrigues Ferraz, Universidade Estadual de Mato Grosso do Sul- Unidade Acadêmica de Química Industrial/Centro de Estudos em Recursos Naturais - CERNA

Graduação em Química.
Universidade Estadual de Mato Grosso do Sul

Margareth Batistote, Universidade Estadual de Mato Grosso do Sul- Pós-graduação em Recursos Naturais/Centro de Estudos em Recursos Naturais - CERNA

Possui graduação em Biologia pela Universidade Católica Dom Bosco (1988). Mestrado em Microbiologia pela Universidade Estadual de Londrina (1998). Doutorado (2006) e Pós-Doutorado (2007) em Biotecnologia, pela Universidade Estadual Paulista Júlio de Mesquita Filho - Instituto de Química. Tem experiência na área de Microbiologia, com ênfase em Protozoários, bactérias e leveduras atuando principalmente nos seguintes temas: tripanosomatideos caracterização fisiológica, leveduras, fonte de carbono, fonte de nitrogênio, metabolismo e processos fermentativos

Antonio Rogério Fiorucci, Universidade Estadual de Mato Grosso do Sul- Pós-graduação em Recursos Naturais/Centro de Estudos em Recursos Naturais - CERNA

Possui graduação em Bacharelado em Química pela Universidade Federal de São Carlos (1995), graduação em Licenciatura Em Química pela Universidade Federal de São Carlos (1999), mestrado em Química Analítica pela Universidade Federal de São Carlos (1998) e doutorado em Química Analítica pela Universidade Federal de São Carlos (2002). Atualmente é professor de ensino superior associado (nível V) da Universidade Estadual de Mato Grosso do Sul (UEMS). Tem experiência na área de Química, com ênfase em Eletroanalítica e Ensino de Química. Foi coordenador de área (subprojeto de Química) do programa PIBID-UEMS no período de 2010 a 2018. Atua como docente do corpo permanente do Programa de Pós-graduação em Recursos Naturais (PGRN) e do Mestrado Profissional em Educação Científica e Matemática (MPECM)

References

ANDRADE, L. C. T.; FRANÇA, F. R. M.; RAMOS, A. L. D.; SILVA, G. F. Avaliação da estabilidade do biodiesel produzido a partir da Moringa oleifera lam. Scientia Plena, 2016; 12: 1-7.

ANP – Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. Resolução n. 45 de 26 de agosto de 2014. Diário Oficial da União(Brasília). 2012 dec 21.

ANTUNES JÚNIOR, A. U.; SILVA, A. S.; CARVALHO, M. W. N. C.; PEREIRA, K. R. O. Armazenamento, estabilidade oxidativa e caracterização do biodiesel metílico de soja. Scientia Plena, 2017; 13:1-12.

BIODIESELBR [Internet]. Brazil: JBS anuncia 1ª exportação e espera aumentar vendas com B7 [cited 2017 nov 27]. Available from: www.BiodieselBR.com

BONDIOLI, P.; GASPAROLI, A.; DELLA BELLA, L.; TAGLIABUE, S.; TOSO, G. Biodiesel stability under commercial storage conditions over one year. Lipid Science and Technology, 2003; 105:735-741.

BOUAID, A.; MARTINEZ, M.; ARACIL, J. Long storage stability of biodiesel from vegetable and used frying oils. Fuel, 2007; 86:2596-2602.

BREWER, M. S. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Comprehensive Reviews in Food Science and Food Safety, 2011; 10:221-247.

CABELO-CARMONA, M.; LEIVA-CANDIA, D.; CASTRO-CANTARERO, J. L.; PINZI, S.; DORADO, M. P. Valorization of food waste from restaurants by transesterification of the lipid fraction. Fuel, 2017; 215:492-498.

CHISTENSEN, E.; MCCORMICK, R. L. Long-term storage stability of biodiesel and biodiesel blends. Fuel Processing Technology, 2014; 128:339-348.

CLIMA [Internet]. Europa: Climograma, temperatura e tabela climática da Europa, [cited 2017 dec 27]. Available from: https://pt,climate-data,org/location/1049740/>

COMIN, M., SOUZA, A. C. D.; ROVEDA, A.; YAHAGI, S. S.; OLIVEIRA, L. H.; AMARAL, M. S.; SILVA, C. A. A.; FIORUCCI, A. R.; GOMES, R. S.; CAIRES, A. R. L.; TRINDADE, M. A. G. Alternatives binay and ternary blends and its effects on stability of soybean biodiesel contaminated with metals. Fuel, 2017; 191:275-282.

COPPO, R. L.; BORSATO, D.; PEREIRA, J. L.; SILVA, H. C. FAME Storage time in an optimized natural antioxidant mixture. Journal of Renewable Energy, 2013:1-11.

EN 14112 Fat and oil derivatives, Fatty Acid Methyl Esters (FAME), Determination of oxidation stability (accelerated oxidation test), British Standards Institution, London, England, 2003.

FERNANDES, D. M.; MONTES, R. H. O.; ALMEIDA, R. S.; NASCIMENTO, A. N.; OLIVEIRA, P. V.; RICHTER, E. M.; MUNÕZ, R. A. A. Storage stability and corrosive character of stabilised biodiesel exposed to carbon and galvanised steels. Fuel, 2013; 107:609-614.

FOCKE, W. W.; VAN DER WESTHUIZEN, I.; GROBLER, A. B. L.; NSHOANE, K. T.; REDDY, J. K.; LUYT, A. S. The effect of synthetic antioxidants on the oxidative stability of biodiesel. Fuel, 2012; 94:227–233.

HUNG, Y. S.; CHEN, Y. H.; SHANG, N. C.; CHANG, C. H.; LU, T. L.; CHANG, C. Y.; SHIE, J. L. Comparison of biodiesels produced from waste and virgin vegetable oils. Sustainable Environment Research, 2010; 20:417-422.

ITO, M.; MURAKAMI, K.; YOSHINO, M. Antioxidant action of eugenol compounds: role of metal ion in the inhibition of lipid peroxidation. Food and Chemical Toxicology, 2005; 43:461-466.

JUNG, J. M.; LEE, S. R.; LEE, J.; LEE, T.; TSANG, D. C. W.; KWON, E. E. Biodiesel synthesis using chicken manure biochar and waste cooking oil. Bioresource Technology, 2017; 244:810-815.

KARAVALAKIS, G.; BAKEAS, E.; STOUNAS, S. Influence of oxidized biodiesel blends on regulated and unregulated emissions from a diesel passenger car. Environmental Science & Technology, 2010; 44:5306-5312.

KHALIL, A. A.; RAHMAN, U.; KHAN, M. R.; SAHAR, A.; MEHMOOD, T.; KHAN, M. Essential oil eugenol: sources, extraction techniques and nutraceutical perspectives. Royal Sociaty of Chemistry Advances, 2017; 7:32669-32681.

KNOTHE, D.; RAZON, L. F. Progress in energy and combustion science. Biodiesel fuels, 2017; 58:36-59.

KNOTHE, G.; GERPEN, J. V.; KRAHL, J.; RAMOS, L. P. Manual de Biodiesel. Editora Edgard Blücher, 2006;12:5-7.

KUMAR, N. Oxidative stability of biodiesel: Causes, effects and prevention. Fuel, 2017; 190:328-350.

LINARES, N.; SILVESTRE-ALBERO, A. M.; SERRANO, E.; SILVESTRE-ALBERO, J.; GARCÍA-MARTÍNES, J. Mesoporous materials for clean energy technologies. Chemical Sociaty Reviews, 2014; 43:7681-7717.

A METROHM. Manual 8,848,8002 EN for titrator 848 Titrino Plus e 877 Titrino Plus. 2011 [cited 2017 nov 02]. Available from:

B METROHM. Potenciometric determination of TAN in petroleum products according to ASTM D664. 2011 [cited 2017 nov02].Availablefrom: https://www,metrohm,com/enau/applications/%7B0B60BFBE-4A19-4AB4-96EA-E11435BCFABC%7D

OLIVEIRA, R. S.; SILVA, E. A.; RODRIGUES, P. R. P.; SOUZA, S. N. M. Avaliação da ação antioxidante de produtos naturais no biodiesel B100 (Glycine max). Engevista, 2014; 16:410-419.

PANTOJA, S. S.; CONCEIÇÃO, L. R. V.; COSTA, C. E.; ZAMIAN, J. R.; ROCHA FILHO, G. N. Oxidative stability of biodiesel produced from vegetable oils have different degrees of unsaturation. Energy Conversion and Management, 2013; 74: 293-298.

PEREIRA, C. A. M.; MAIA, J. F. Estudo da atividade antioxidante do extrato e do óleo essencial obtidos das folhas de alfavaca (Ocimum gratissimum L.). Ciência e Tecnologia de Alimentos, 2007; 27:624-632.

PEREIRA, G.; MARMESAT, S.; BARRERA-ARELLANO, D.; DOBARGANES, M. Evolution of oxidation in soybean oil and its biodiesel under the conditions of the oxidation stability test. Graças y Aceites, 2013; 64:482-488.

POKORNY, J. Are natural antioxidants better – and safer – than synthetic antioxidants? European Journal of Lipic Science and Technology, 2007; 109:629-642.

PULLEN, J.; SAEED, K. An overview of biodiesel oxidation stability. Renewable and Sustainable Energy Reviews, 2012; 16:5924-5950.

RAMALHO, V. C.; JORGE, N. Antioxidantes utilizados em óleos, gorduras e alimentos gordurosos. Química Nova, 2006; 29:755-760.

RIZWANUL, F. I. M.; MASJUKI, H. H.; KALAM, M. A.; HAZRAT, M. A.; MASUM, B. M.; IMTENAN, S.; ASHRAFUL, A. M. Effect of antioxidants on oxidation stability of biodiesel derived from vegetable and animal based feedstocks. Renewable and Sustainable Energy Reviews, 2014; 30:356-370.

RODRIGUES FILHO, M. G. Cardanol e eugenol modificados - uso como antioxidantes no controle do processo oxidativo do biodiesel etílico de algodão [thesis]. João Pessoa: Universidade Federal da Paraíba/ UFPB, 2010. 121 p.

SALUJA, R. K.; KUMAR, V.; SHAM, R. Stability of biodiesel - A review. Renewable and Sustainable Energy Reviews, 2016; 62:866-881.

SANTOS, A. C.; SANTOS, K. A.; SILVA, E.; CORAZZA, M. Avaliação da estabilidade oxidativa do biodiesel de soja (Glycine max L.) na presença de antioxidantes naturais obtidos das folhas de acerola (Malpighia glabra L.) utilizando CO2 supercrítico. Revista Brasileira de Energias Renováveis, 2014; 3:197-210.

SANTOS, G.; TRINDADE, M. A.; LINCOLN, V. S. F.; OLIVEIRA, C. S.; NOVA, P. C. C. V.; ARRUDA, E. J. Influence of dyes in oxidative stability of samples of biodiesel. Journal of Biotechnology and Biodiversity, 2012; 3:153-158.

SARIN, A.; SINGH, N. P.; RAKESH, S.; MALHOTRA, R. K. Natural and synthetic antioxidants: Influence on the oxidative stability of biodiesel synthesized from non-edible oil. Energy, 2010; 35:4645-4648.

SERES, J. D. S.; SOARES, D.; CORAZZA, M. L.; KRIEGER, N,; MITCHELL, D. A. Liquid-liquid equilibrium data and thermodynamic modeling for systems related to the production of ethyl esters of fatty from soybean soapstock acid oil. Fuel, 2015; 147:147-154.

SERQUEIRA, D. S.; DORNELLAS, R. M.; SILVA, L. G.; MELO, P. G.; CASTELLAN, A.; RUGGIERO, R.; RITCHER, E. M.; Munoz, R. A. A. Tetrahydrocurcuminoids as potential antioxidants for biodiesels. Fuel, 2015; 160:490-494.

SOUZA, L. S.; MOURA, C. V. R.; OLIVEIRA, J. E.; MOURA, E. M. Use of natural antioxidants in soybean biodiesel. Fuel, 2014; 134:420-428.

TAGHVAEI, M.; JAFARI, S. M.; MAHOONAK, A. S.; NIKOO, A. M.; RAHMANIAN, N.; JAYAD, H.; MESHGINFAR, N. The effect of natural antioxidants extracted from plant and animal resources on the oxidative stability of soybean oil. Food Science and Technology, 2014; 5:124-130.

TUBINO, M.; ARICETTI, J. A. A green method for determination of acid number of biodiesel. Journal of the Brazilian Chemical Society, 2011; 22:1073-1081.

VARATHARAJAN, K.; PUSHPARANI, D. S. Screening of antioxidant additives for biodiesel fuels. Renewable and Sustainable Energy Reviews, 2017; 82:2017-2028.

WANASUNDARA, P. K. J. P. D.; SHAHIDI, F. Antioxidants: Science, Technology, and Applications. In: SHAHIDI, F. (Ed.) Bailey's Industrial Oil and Fat Products. Edible Oil an Fat Products: Chemistry, Properties and Health Effects, 2005; 1:431-489.

YANG, Z.; HOLLEBONE, B. P.; WANG, Z.; YANG, C.; BROWN, C.; LANDRIAULT, M. Storage stability of commercially available biodiesels and their blends under different storage conditions. Fuel, 2014; 115:366-377.

ZHOU, J.; YUN, X.; XU, S. Evaluation of the oxidation stability of biodiesel stabilized with antioxidants using the PetroOXY method. Fuel, 2016; 184:808-814.

Downloads

Published

2018-03-27

How to Cite

Souza, E. F. de, Ramos, T. C. P. M., Santos, M. N., Ferraz, J. R., Silva, M. S. da, Batistote, M., & Fiorucci, A. R. (2018). Effect of the natural antioxidant eugenol on quality preservation of commercial biodiesels produced with soybean oil or waste frying oil during storage at different temperatures. Ciência E Natura, 40, e61. https://doi.org/10.5902/2179460X32810

Issue

Section

Chemistry

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.