Stress factors and cytotoxic and genotoxic action of ethanol in Saccharomyces cerevisiae

Authors

DOI:

https://doi.org/10.5902/2179460X83730

Keywords:

Yeasts, Fermentation, Deoxyribonucleic acid

Abstract

In industrial fermentation, Saccharomyces cerevisiae are exposed to different stress conditions. In this sense, the aim of this study was to evaluate the toxic action of ethanolic stress on Saccharomyces cerevisiae. Exploratory research was carried out on the stress factors that cause injuries in yeast. Fermentation tests were conducted with the Fleischmann® and Pedra-2 strains, cultivated in sugarcane juice at 22 ºBrix and pH 5.0, adding concentrations of 5, 10, and 15% of ethyl alcohol, and incubated at 30°C at 250 rpm for 10 hours. For the cytotoxic tests, 100 µl of samples were collected for evaluation of cell growth by spectrophotometric measurements at 570 nm, and 5 µl were dripped into Petri dishes containing 2% YPD solid medium and incubated at 30ºC for 72 hours for colony growth. For the genotoxicity test, the comet test was used with 0.5 µl of the samples added to slides previously prepared and subjected to electrophoretic running and subsequently stained in a 0.1% silver nitrate solution. 100 random nucleotides were evaluated, evaluating five DNA damage classes (0, 1, 2, 3, and 4) according to the intensity and pattern of genetic material entrainment. The results show that stress factors interfere with yeast performance. Fleischmann® showed sensitivity to ethanolic stress.

Downloads

Download data is not yet available.

Author Biographies

Maria do Socorro Mascarenhas, Universidade Federal de Mato Grosso do Sul

Graduated in Higher Technology Course in Environmental Management from Universidade Católica Dom Bosco (2012). Degree in Technology in Sugar and Alcohol Production from the State University of Mato Grosso do Sul (2015). Specialization in Biotechnology from the Dom Bosco Catholic University (2016). Degree in Production Engineering from Centro Universitário da Grande Dourados (2022). Master's degree in Natural Resources from the State University of Mato Grosso do Sul (2018) and PhD in Natural Resources from the State University of Mato Grosso do Sul (2023).

Larissa Pires Mueller, Universidade Federal da Grande Dourados

Doctoral student in the Postgraduate in Health Sciences from the Universidade Federal da Grande Dourados/UFGD, Dourados, Mato Grosso do Sul, Brasil.

Margareth Batistote, Universidade Federal de Mato Grosso do Sul

Senior Teacher at the Postgraduate in Natural Resources at Universidade Estadual de Mato Grosso do Sul/UEMS, Unidade Universitária de Dourados, Mato Grosso do Sul, Brasil.

References

Arias, D. M., Ortíz-Sánchez, E., Okoye, P. U., Rodríguez-Rangel, H., Ortega, A. B., Longoria, A., ... & Sebastian, P. J. (2021). A review on cyanobacteria cultivation for carbohydrate-based biofuels: cultivation aspects, polysaccharides accumulation strategies, and biofuels production scenarios. Science of the Total Environment, 794, 148636. DOI: https://doi.org/10.1016/j.scitotenv.2021.148636

Auesukaree, C. (2017). Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation. Journal of bioscience and bioengineering, 124(2), 133-142. DOI: https://doi.org/10.1016/j.jbiosc.2017.03.009

Batistote, M., Cardoso, C. A. L., Ramos, D. D., & Ernandes, J. R. (2010). Desempenho de leveduras obtidas em indústria de Mato Grosso do Sul na produção de etanol em mosto a base de cana de açúcar. Ciência e Natura, 83-95.

Belda, I., Ruiz, J., Santos, A., Van Wyk, N., & Pretorius, I. S. (2019). Saccharomyces cerevisiae. Trends in Genetics, 35(12), 956-957. DOI: https://doi.org/10.1016/j.tig.2019.08.009

Bernardi, B., & Wendland, J. (2020). Homologous recombination: a GRAS yeast genome editing tool. Fermentation, 6(2), 57. DOI: https://doi.org/10.3390/fermentation6020057

Câmara Jr, A. A., & Sant’Ana, A. S. (2021). Advances in yeast preservation: physiological aspects for cell perpetuation. Current opinion in food science, 38, 62-70. DOI: https://doi.org/10.1016/j.cofs.2020.10.019

Ceccato-Antonini, S. R. (2018). Conventional and nonconventional strategies for controlling bacterial contamination in fuel ethanol fermentations. World Journal of Microbiology and Biotechnology, 34(6), 80. DOI: https://doi.org/10.1007/s11274-018-2463-2

Cui, N., Pozzobon, V., Guerin, C., & Perré, P. (2020). Effect of increasing oxygen partial pressure on Saccharomyces cerevisiae growth and antioxidant and enzyme productions. Applied Microbiology and Biotechnology, 104, 7815-7826. DOI: https://doi.org/10.1007/s00253-020-10824-4

Eardley, J., & Timson, D. J. (2020). Yeast cellular stress: impacts on bioethanol production. Fermentation, 6(4), 109. DOI: https://doi.org/10.3390/fermentation6040109

Eigenfeld, M., Kerpes, R., & Becker, T. (2021). Understanding the impact of industrial stress conditions on replicative aging in Saccharomyces cerevisiae. Frontiers in Fungal Biology, 2, 665490. DOI: https://doi.org/10.3389/ffunb.2021.665490

Faulkner, S., Maksimovic, I., & David, Y. (2021). A chemical field guide to histone nonenzymatic modifications. Current opinion in chemical biology, 63, 180-187. DOI: https://doi.org/10.1016/j.cbpa.2021.05.002

Gomes, D., Cruz, M., de Resende, M., Ribeiro, E., Teixeira, J., & Domingues, L. (2021). Very high gravity bioethanol revisited: main challenges and advances. Fermentation, 7(1), 38. DOI: https://doi.org/10.3390/fermentation7010038

Gopalakrishnan, R., Marr, S. K., Kingston, R. E., & Winston, F. (2019). A conserved genetic interaction between Spt6 and Set2 regulates H3K36 methylation. Nucleic acids research, 47(8), 3888-3903. DOI: https://doi.org/10.1093/nar/gkz119

Grellet, M. A. C., Dantur, K. I., Perera, M. F., Ahmed, P. M., Castagnaro, A., Arroyo-Lopez, F. N., ... & Ruiz, R. M. (2022). Genotypic and phenotypic characterization of industrial autochthonous Saccharomyces cerevisiae for the selection of well-adapted bioethanol-producing strains. Fungal biology, 126(10), 658-673. DOI: https://doi.org/10.1016/j.funbio.2022.08.004

Harre, N. T., Nie, H., Jiang, Y., & Young, B. G. (2018). Differential antioxidant enzyme activity in rapid‐response glyphosate‐resistant Ambrosia trifida. Pest management science, 74(9), 2125-2132. DOI: https://doi.org/10.1002/ps.4909

Lin, N. X., Xu, Y., & Yu, X. W. (2022). Overview of yeast environmental stress response pathways and the development of tolerant yeasts. Systems Microbiology and Biomanufacturing, 1-14. DOI: https://doi.org/10.1007/s43393-021-00058-4

Do Socorro Mascarenhas, M., Mueller, L. P., Batistote, M., & Cardoso, C. A. L. (2022). Damage to deoxyribonucleic acid-DNA and its influence on ethanol production in industrial lines of Saccharomyces cerevisiae in relation to fermentative cycles. Revista de Biologia Neotropical/Journal of Neotropical Biology, 19(2), 69-77. DOI: https://doi.org/10.5216/rbn.v19i2.74455

Mavrommati, M., Daskalaki, A., Papanikolaou, S., & Aggelis, G. (2022). Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnology Advances, 54, 107795. DOI: https://doi.org/10.1016/j.biotechadv.2021.107795

Mitsui, R., Yamada, R., & Ogino, H. (2019). CRISPR system in the yeast Saccharomyces cerevisiae and its application in the bioproduction of useful chemicals. World Journal of Microbiology and Biotechnology, 35, 1-9. DOI: https://doi.org/10.1007/s11274-019-2688-8

Moreno, A. D., González-Fernández, C., Ballesteros, M., & Tomás-Pejó, E. (2019). Insoluble solids at high concentrations repress yeast’s response against stress and increase intracellular ROS levels. Scientific reports, 9(1), 12236. DOI: https://doi.org/10.1038/s41598-019-48733-w

Naghshbandi, M. P., Tabatabaei, M., Aghbashlo, M., Gupta, V. K., Sulaiman, A., Karimi, K., ... & Maleki, M. (2019). Progress toward improving ethanol production through decreased glycerol generation in Saccharomyces cerevisiae by metabolic and genetic engineering approaches. Renewable and Sustainable Energy Reviews, 115, 109353. DOI: https://doi.org/10.1016/j.rser.2019.109353

Opalek, M., & Wloch-Salamon, D. (2020). Aspects of multicellularity in Saccharomyces cerevisiae yeast: a review of evolutionary and physiological mechanisms. Genes, 11(6), 690. DOI: https://doi.org/10.3390/genes11060690

Parapouli, M., Vasileiadis, A., Afendra, A. S., & Hatziloukas, E. (2020). Saccharomyces cerevisiae and its industrial applications. AIMS microbiology, 6(1), 1. DOI: https://doi.org/10.3934/microbiol.2020001

Picazo, C., & Molin, M. (2021). Impact of hydrogen peroxide on protein synthesis in yeast. Antioxidants, 10(6), 952. DOI: https://doi.org/10.3390/antiox10060952

Plante, S., Moon, K. M., Lemieux, P., Foster, L. J., & Landry, C. R. (2023). Breaking spore dormancy in budding yeast transforms the cytoplasm and the solubility of the proteome. PLoS Biology, 21(4), e3002042. DOI: https://doi.org/10.1371/journal.pbio.3002042

Pretorius, I. S., & Boeke, J. D. (2018). Yeast 2.0—connecting the dots in the construction of the world's first functional synthetic eukaryotic genome. FEMS yeast research, 18(4), foy032. DOI: https://doi.org/10.1093/femsyr/foy032

Santos, M. D. S. M., Silva, E. M., Cardoso, C. A. L., & Batistote, M. (2022). The action of light on Saccharomyces cerevisiae metabolism under different culture conditions. HOLOS, 8.

Sunyer-Figueres, M., Vázquez, J., Mas, A., Torija, M. J., & Beltran, G. (2020). Transcriptomic insights into the effect of melatonin in Saccharomyces cerevisiae in the presence and absence of oxidative stress. Antioxidants, 9(10), 947. DOI: https://doi.org/10.3390/antiox9100947

Tse, T. J., Wiens, D. J., & Reaney, M. J. (2021). Production of bioethanol—A review of factors affecting ethanol yield. Fermentation, 7(4), 268. DOI: https://doi.org/10.3390/fermentation7040268

Vamvakas, S. S., & Kapolos, J. (2020). Factors affecting yeast ethanol tolerance and fermentation efficiency. World Journal of Microbiology and Biotechnology, 36(8), 114. DOI: https://doi.org/10.1007/s11274-020-02881-8

Walker, G. M., & Basso, T. O. (2020). Mitigating stress in industrial yeasts. Fungal Biology, 124(5), 387-397. DOI: https://doi.org/10.1016/j.funbio.2019.10.010

Wang, M., Xu, H., Liu, C., Tao, Y., Wang, X., Liang, Y., ... & Yu, J. (2022). Peroxisome proliferator FpPEX11 is involved in the development and pathogenicity in Fusarium pseudograminearum. International Journal of Molecular Sciences, 23(20), 12184. DOI: https://doi.org/10.3390/ijms232012184

Yeastract - Yeast Search for Transcriptional Regulators and Consensus Tracking. (2023). Disponível em: www.yeastract.com. Acesso em 19 de janeiro de 2023.

Zazulya, A., Semkiv, M., Dmytruk, K., & Sibirny, A. (2020). Adaptive evolution for the improvement of ethanol production during alcoholic fermentation with the industrial strains of yeast Saccharomyces cerevisiae. Cytology and Genetics, 54, 398-407. DOI: https://doi.org/10.3103/S0095452720050059

Zhu, S., Luo, F., Li, J., Zhu, B., & Wang, G. X. (2018). Biocompatibility assessment of single-walled carbon nanotubes using Saccharomyces cerevisiae as a model organism. Journal of Nanobiotechnology, 16, 1-12. DOI: https://doi.org/10.1186/s12951-018-0370-1

Downloads

Published

2024-08-16

How to Cite

Mascarenhas, M. do S., Mueller, L. P., & Batistote, M. (2024). Stress factors and cytotoxic and genotoxic action of ethanol in Saccharomyces cerevisiae. Ciência E Natura, 46, e83730. https://doi.org/10.5902/2179460X83730

Issue

Section

Biology-Genetics

Most read articles by the same author(s)